0%

STAT2006_01

Preface

Probability distributions

  • Uniform
  • Poisson
    • Discrete
    • Parameter: $\lambda$
    • $P(X = k) = \frac {e^{-\lambda}\lambda^k}{k!}$
  • Normal
  • t-dis???
  • Chi-square 卡方分布
  • Cauchy

Benford’s Law

$P(d) = log_{10}(d+1)-log_{10}(d)$, where d is the case that the first digit of the data is d

Ch 1

Sample space: $S$

event:

  • subset of $S$
  • measurable, (can assign a probability)
  • subset is NOT event

Conditional Probability:

$P(A|B) = \frac{P(A\cap B)}{P(B)}$

Bayes theorem

$P(A) = \sum{P(A\cap B_i)}$

Now: We want to know: if A happened, what are the p of different B?

$P(B_j|A) = \frac{P(A\cap B_j)}{P(A)}$

$P(A\cap B_j) = P(A|B_j)P(B_j)$

Bayes theorem definition:

Consider a partition $B_j$ of $S$ and event $A$:

$P(B_j|A) = \frac{P(A\cap B_j)}{P(A)}= \frac{P(A|B_j)P(B_j)}{\sum{P(A|B_i)P(B_i)}}​$

Monty Hall Problem

$B_j = C_2|X_1, A = H_3|X_1$

Ch 2 Discrete Random Variables

Mean is the quantity a that minimizes $min_aE(X-a)^2$

Variance $(x-E(x))^2$

Moment generating function = mgf = summary of the overall random behavior

median $min_b |x-b|$