
Appendix: How Powerful are Graph Neural Networks in the Coloring Problem?

Graph Terminology
Here we list the following graph theoretic terms encountered
in our work. Let G = (V, E) and G′ = (V ′, E ′) be graphs on
vertex set V and V ′, we define

• isomorphism: we say that a bijection π : V → V ′ is an
isomorphism if any two vertices u, v ∈ V are adjacent in
G if and only if π(u), π(v) ∈ V ′ are adjacent in G′, i.e.,
{u, v} ∈ E iff {π(u), π(v)} ∈ E ′.
• isomorphic nodes: If there exists the isomorphism be-

tween G and G′, we say that G and G′ are isomorphic.
• automorphism: When π is an isomorphism of a vertex set

onto itself, i.e., V = V ′, π is called an automorphism of
G.
• topologically equivalent: We say that the node pair
{u, v} is topologically equivalent if there is an automor-
phism mapping one to the other, i.e., v = π(u).
• equivalent: {u, v} is equivalent if it is topologically

equivalent by π and xw = xπ(w) holds for every w ∈ V ,
where xw is the node attribute of node w.
• r-local topologically equivalent: The node pair {u, v} is
r-local topologically equivalent if πr is an isomorphism
from BG(u, r) to BG(v, r).
• r-local equivalent: {u, v} is r-local equivalent if it is r-

local topologically equivalent by πr and xw = xπr(w)

holds for every w ∈ BG(u, r).
• r-local isomorphism: A bijection πr is an r-local isomor-

phism that maps u to v if πr is an isomorphism that maps
BG(u, r) to BG(v, r).

Proofs
Proof of Property 1
We first recall the property.

Property 1. All AC-GNNs cannot discriminate any equiva-
lent node pair.

Proof. Let π be the automorphism mapping u to v, here, we
propose a stronger property:

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Property 1. Given an AC-GNN and an equivalent node pair
{u, v} by π, hiw = hiπ(w) holds for any iteration i and any
node w ∈ V .

This apparently holds for i = 0 since xw = xπ(w),∀w ∈
V . Suppose this holds for iteration j, i.e., hjw = hjπ(w),∀w ∈
V . By definition, AC-GNN A produces the feature vector
hj+1
v of node v in the (j + 1)th iteration as follows:

h(j+1)
v = COM(j+1)(h(j)

v ,AGG(j+1)({h(j)
u : u ∈ N (v)})).

(1)

Since an automorphism π remains the set of edges, i.e.,
{u, v} ∈ E iff {π(u), π(v)} ∈ E , the connection rela-
tion between two neighbors is preserved after the permu-
tation by π, that is, N (π(v)) = {π(u), u ∈ N (v)} for any
v ∈ V . Then, the input of AGG(j+1) for π(v) is given by
{h(j)

u : u ∈ N (π(v))}, which is {h(j)
π(u) : u ∈ N (v)}. Since

hjw = hjπ(w),∀w ∈ V , the input of AGG(j+1) for v is equal

to the one of AGG(j+1) for v, i.e., {h(j)
π(u) : u ∈ N (v)} =

{h(j)
π(u) : u ∈ N (v)} and makes their output equal, i.e.,

mj+1
v = mj+1

π(v). Therefore, the input of COM(j+1) for v,

(h
(j)
v ,mj+1

v), is also equal to the one of COM(j+1) for π(v),
which makes the vector features of v and π(v) equal after
(j + 1)th iteration for any node v ∈ V and proves the prop-
erty 1. Thus, the AC-GNNA always produces the same node
embeddings for the nodes in the equivalent node pair, which
results in the same color.

Proof of Property 2
We first recall the property.
Property 2. If a graph G contains two connected nodes u
and v that share the same neighborhood except each other,
i.e., N (u)\{v} = N (v)\{u}, then an integrated AC-GNN
cannot discriminate {u, v}.

Proof. The proof starts with a simple fact: a classifier
CLS(·) always assigns two nodes with the same node
embedding to the same category. It follows that the in-
puts for the node features of u and v after iteration k
are exactly the same since N (u) ∪ {u} = N (u)\{v} ∪

{u, v} = N (v)\{u} ∪ {u, v} = N (v) ∪ {v}. Therefore,
the outputs are the same, which means that h(j)

u = h
(j)
v

holds for any iteration k and any aggregation and com-
bine functions AGG(·),COM(·). Combining with the fact
that CLS(hu) = CLS(hv) if hu = hv , the proof is fin-
ished.

Proof of Corollary 1
We first recall the corollary.

Corollary 1. A local coloring method is non-optimal in the
random d-regular graph as d→∞.

Proof. A random d-regular graph Gnd is a graph with n nodes
and each node pair is connected with a probability d/n. We
start the proof from the following non-trivial property:

Property 2 ((?)). The largest density of factor of i.i.d. inde-
pendent sets in a random d-regular graph is asymptotically
at most (log d)/d as d → ∞. The density of the largest in-
dependent sets in these graphs is asymptotically 2(log d)/d.

The property above limits the size of an independent set
produced by local method for the random d-regular graph
with an upper bound, n(log d)/d as d→∞. Given an upper
bound of the independent set, the following corollary on the
graph coloring problem is introduced:

Corollary 3. The lower bound of k with a zero conflict con-
straint obtained by a local coloring method for the random
d-regular graph is d/ log d as d→∞.

The proof is based on the Property 2: if a local coloring
method f obtains a smaller k′, s.t. k′ < d/ log d by coloring
Gnd without conflict using k′ colors, all node sets classified
by the node color will be independent sets and the size of
the maximum one will be larger than (n log d)/d, a contra-
diction with Property 2.

The Corollary 3 reveals the lower bound of k by local
methods for a random d-regular graph. Another important
observation of k by (?) specifies that exact value of the chro-
matic number (i.e., the minimum k) of a random d-regular
graph. The property is described as follows:

Property 3 ((?)). Let td be the smallest integer t such that
d < 2t log t. The chromatic number of a random d-regular
graph is either td or td + 1.

It follows directly from Corollary 3 and Property 3 that,
we can finish the proof of Corollary 1 by showing that the
lower bound of k by local methods is always greater than the
exact chromatic number:

d/ log d > td + 1 for d→∞. (2)

Let f(t) = 2t log t and define t0 s.t. d = f(t0) =
2t0 log t0. Since td is the smallest integer t such that d <
f(t), we have f(t0) = d ≥ f(td − 1). Since f is monoton-
ically increasing, t0 ≥ td − 1 and thus d/ log d − td − 1 ≥

d/ log d−t0−2 always holds. Let d = 2t0 log t0, we further
derive the objective below:

d/ log d− td − 1 ≥ d/ log d− t0 − 2

=
2t0 log t0

log(2t0 log t0)
− t0 − 2 > 0, for d, t0 →∞.

we first prove that

log t0
log(2t0 log t0)

> 2/3

⇒3 log t0 > 2 log(2t0 log t0)

⇒3 log t0 > 2(1 + log t0 + log(log t0))

⇒ log t0 > 2 + 2 log(log t0) when t0 →∞.

The above inequality holds obviously. Following the objec-
tive, we have:

2t0 log t0
log(2t0 log t0)

− t0 − 2

>
4

3
t0 − t0 − 2 > 0 when t0 →∞.

Therefore, we finish the proof.

Proof of Corollary 2
We first recall the corollary.

Corollary 2. L-AC-GNN is a L-local coloring method and
thus a local coloring method

Proof. Given an AC-GNN A with L layers, let’s consider
a L-local equivalent node pair {u, v} in G by an L-local
automorphism πL, which means that two rooted subtrees
BG(u, L) and BG(v, L) are isomorphic and xw = xπr(w)

holds for every w ∈ BG(u, r). Since two rooted subtrees are
isomorphic, the WL test (?) decides BG(u, L) and BG(v, L)
are isomorphic and assigns the same color to w and πL(w)
for any w ∈ BG(u, L). To connect the WL test with AC-
GNN, the following property is used:

Property 4 ((???)). If the WL test assigns the same color
to two nodes in a graph, then every AC-GNN maps the two
nodes into the same node embedding.

Therefore, A maps the u and v into the same node em-
bedding. It follows that A is L-local and thus local.

Proof of Property 3
We first recall the theorem.

Property 3. Let {u, v} be a node pair in any graph G, andL
be any positive integer. If aL-AC-GNN discriminates {u, v},
a L+-AC-GNN also discriminates it.

Here, a L+-AC-GNN is defined as an AC-GNN by stack-
ing injective layers after L-AC-GNN (before CLS(·)). An
injective layer includes a pair of injective aggregation func-
tion and injective combination function.

Proof. Let AL be the L-AC-GNN that discriminates {u, v},
and hLu ,h

L
v are the node embedding generated by AL (be-

fore CLS(·)) and correspond to the node u, v respectively.
Given the condition thatAL discriminates {u, v}, i.e., hLu 6=
hLv , we here consider the case where L+-AC-GNN AL+ is
an AC-GNN that only stack one injective layer after AL.
Then, hL+v , the node embedding of v generated by AL+ is
defined as:

hL+v = COML+(hLv ,AGGL+({hLm : m ∈ N (v)})), (3)

where COML+ and AGGL+ are the combination and ag-
gregation functions of the newly stacked injective layer.
Since hLu 6= hLv , and hLu ,h

L
v are in the input multisets

{hLu ,AGGL+({hLm : m ∈ N (u)})}, {hLv ,AGGL+({hLm :

m ∈ N (v)})} respectively, the input multiset of COML+

when calculating hL+v is different with the one when cal-
culating hL+u . Because COML+ is injective, we can fur-
ther conclude that the output of COML+ when calculating
hL+v is different with the one when calculating hL+u , that is,
hL+u 6= hL+v . By induction, the inequality can be applied for
any additional stacked layers. We finish the proof.

Related Works
Graph Neural Networks.
Analysis on the power of GNNs. With the overwhelming
success of GNNs in various fields ranging from recommen-
dation system and VLSI design, recently, the study on the
power of GNNs becomes more and more important and nec-
essary, and has attracted extensive interest. The two recent
papers (??) formalize the power as the capability to map two
equivalent nodes to the same node embedding. They explore
the power by establishing a close connection between GNNs
and 1-Weisfeiler-Lehman (WL) test, a classical algorithm
for the graph isomorphism test. More specifically, they in-
dependently showed that every time when two nodes are as-
signed the same embedding by any GNN, the two nodes will
always be labeled the same by the 1-WL test, which means
that GNNs are upper-bounded by 1-WL test in terms of the
representation power. To develop a more powerful GNN that
breaks through the limit by 1-WL test, many attempts are
made from different perspectives. Some GNNs (????) are
proposed by mimicking a higher-order-WL test based on
higher-order tensors. Another direction is to introduce more
informative features/operations to make the model sensitive
to the substructure (?) or global structure (???). We leave the
detailed discussion of such a non-local scheme in Appendix
. Besides the study on the comparison with WL-test, many
other works investigate the power of GNNs from different
angles and a lot of interesting conclusions are obtained. Xu
et al. (?) shows that GNNs align with DP and thus are ex-
pected to solve tasks that are solvable by DP. This interesting
conclusion leaves us a future work to study GNN in the col-
oring problem by learning previous DP-based coloring al-
gorithms. Loukas et al. (?) concludes that the product of the
GNN’s depth and width must exceed a polynomial of the
graph size to obtain the optimal solution of some problems,
e.g., Maximum Independent Set (MIS) problem, and col-
oring problem. This conclusion motivates our experiments

on the model depth, which is covered in Appendix . An-
other work (?) explores the design space for GNNs and gives
some best parameters in various design dimensions, where
best means the selected parameters make the corresponding
GNNs more effective than others. We follow the guidance of
this work to select most hyper-parameters and model archi-
tectures, as shown in Appendix . GeomGCN (?) points the
limits of AC-GNNs from the perspective of network geom-
etry, the node can only exchange information with its neigh-
bors, while the long-range dependencies are missed and sim-
ilar nodes (may be very distant) are more likely to be proxi-
mal. To overcome the issues, a novel geometric aggregation
scheme was proposed. Generally, instead of aggregating in-
formation from graph neighborhoods directly, the original
graph is mapped to a latent continuous space according to
pre-calculated node embedding. Then, a structural neighbor
relation is constructed based on the distance and relative di-
rection in the latent space. However, their motivation is not
applicable for the coloring problem: the coloring results are
totally not relevant with the similarity of nodes.

GNNs for NP problem. Recently, the applications of
GNNs on NP problems received great attention. Some works
integrate GNNs to a sophisticated heuristic algorithm de-
signed for a specific NP problem. Li et al. (?) proposes a
GNN-based framework to solve the MIS problem, where the
adopted GNN generates multiple probability maps to repre-
sent the likelihood of each vertex being in the optimal solu-
tion. However, the following heuristic algorithm to handle
the multiple probability maps is time-consuming. In their
experiments, a graph with 1,000 vertices will yield up to
100K diverse solutions and the heuristic algorithm is pro-
cessed up to 10 minutes. Not saying that the runtime may
explode when applied in the k-coloring problem. Another
work (?) uses GNNs to solve the subgraph matching prob-
lem, a problem of determining whether a given query graph
is a subgraph of a large target graph. They designed a par-
ticular loss function, to ensure that the subgraph relations
are preserved in the embedding space. Besides these direct
applications, some theoretical works discussed the power of
GNNs to solve the NP problem. If P 6= NP, GNNs cannot ex-
actly solve these problems. Under this assumption, Sato (?)
demonstrates the approximation ratios of GNNs for some
combinatorial problems such as the minimum vertex cover
problem. They study the ratio by building the connection be-
tween GNNs and distributed local algorithms. Specifically,
they show that the set of graph problems that GNN classes
can solve is the same as the one that distributed local algo-
rithm classes can solve. Besides a pure GNN, Dai et al. (?)
develops a framework that combines reinforcement learning
and graph embedding to address some NP problems. Gen-
erally, the reinforcement learning model uses the graph em-
bedding obtained by Structure2Vec (?).

GNNs on tasks under heterophily. To the best of our
knowledge, Zhu et al. (?) is the first work that formally ad-
dressed the drawbacks of previous GNNs on tasks under het-
erophily. Beyond homophily, they proposed three designs
that can be beneficial for the learning under heterophily:
1) The node embedding and aggregated embeddings should

be separated. This statement aligns with our Property 2,
addressing the limitation of an integrated AC-GNN in the
coloring problem. Although most previous works focus on
the homophily scenario, some of them (??) also pay at-
tention to the separation of neighbor embeddings and ego-
embedding (i.e., a node’s embedding). 2) The aggrega-
tion function should involve higher-order neighborhoods.
The intuition is that higher-order neighborhoods may be
homophily-dominant. Take the coloring problem as an ex-
ample, if two nodes, say u, v, are connected with another
same node t, then u, v are more likely to be assigned the
same color. This design is also employed in previous works
(??) for homophily, considering that a higher order polyno-
mials of the normalized adjacency matrix indicates a low-
pass filter. 3) The final results should combine intermedi-
ate representations from all layers. The design is originally
introduced in jumping knowledge networks (?) and moti-
vated by the fact that each layers contains information from
neighborhoods of different depth. Zhu also proposes another
method for tasks under heterophily (?). In this work, they
also gives a prior that the feature represents the probabil-
ity(belief). The method is based on the belief propagation
based on the trainable compatibility matrix. Interestingly, if
we dismiss the color equivariance in the summarized rules
and still keeps the prior of the belief, we can directly build
the same model with the one used in (?).

Coloring methods.
The graph coloring problem is crucial in domains ranging
from network science and database systems to VLSI design.
Here, we classify previous coloring methods as learning-
based methods and non-learning-based methods.

Non-learning-based methods. As a classical problem in
the NP-hard classes and graph theory, graph coloring prob-
lem has received considerable attention in past decades.
Here, we only cover some representative non-learning-based
methods that are related to our method from some per-
spectives. Braunstein et al. (?) proposed Belief propagation
(BP) and Survey propagation (SP) to solve the k-coloring
problem, where both methods belong to a message-passing
scheme. The key idea is that, each node is randomly assigned
a probability distribution of colors, then the probability is
updated based on the probabilities of neighbors. Formally,
define ηke→u as the probability that edge e = {u, v} refutes
u as the color k, for the k-coloring problem, ηke→u is updated
by:

ηke→u =

∏
v′∈N (v)/ u(1− ηk{v,v′}→v)∑k

r=1

∏
v′∈N (v)/ u(1− ηr{v,v′}→v)

(4)

The numerator indicates the possibility that v is colored by
the color k (without considering node u). And the frac-
tion is for normalization, making that the sum equals to
one. The SP procedure is a little different, it did not nor-
malize the probability directly, but introduced a joker state,
η?e→u, representing that the edge can not refute any colors,
i.e., 1 = η?e→u +

∑k
r=1 η

r
e→u. The method is simple and

very close to our non-training version. However, the method

is more theoretical and less practical because it is easy to
fall into a trivial solution, i.e., all edges are assigned into
the joker state. Even though a non-trivial solution can be
found, a large number of iterations may be required due to
its randomness. Apart from message passing, Takefuji (?)
proposed an Artificial Neural Network (ANN) based method
for the four-coloring problem. The basic conclusion is that
the probability distribution1 can be updated by subtracting
the aggregated probability distributions of neighbors, which
aligned with the intuition for our parameter initialization.

Learning-based methods. Although our work is the first
one that tries and analyzes the power of GNNs in the graph
coloring problem, there is a surge of learning-based meth-
ods for coloring. Lemos et al. (?) integrated Recurrent Neu-
ral Networks (RNNs) into the message passing framework,
i.e., two RNNs were employed to computes the embedding
update from aggregated messages for each vertex and color.
Finally, the graph embedding was used to predict the chro-
matic number, and the node embedding was used to pre-
dict exact node color by clustering. However, the clustering-
based method generated a prohibitive conflict number as
shown in Table 1 of our paper, making the method not prac-
tical. Huang et al. (?) introduced a fast heuristics coloring
algorithm using deep reinforcement learning. For each step
(state), the model predicts the next node and its best color
solution with a win/lose feedback. The prediction depends
on previous coloring results and a graph embedding gen-
erated by an LSTM. The method can give relatively accu-
rate coloring results, but still only comparable with some
simple heuristic algorithms such as dynamic order color-
ing. On the contrary, our supplementary results in Appendix
demonstrates that our method outperforms these simple

heuristic algorithms significantly. Zhou et al. (?) also bor-
rowed the idea of reinforcement learning. However, the pro-
posed method did not use a training scheme: the actions
towards the environment is defined by a deterministic up-
date function of the coloring probability distributions. The
method achieves a state-of-the-art result quality. However,
the framework contains a descent-based local search with
a portion of randomness, which requires a repeated execu-
tion with different random seeds. Moreover, the local search
algorithm may require extensive iterations to find a local op-
timum. Due to these limitations, the method suffers from the
runtime, in their experiments, the coloring process for a 500-
node graph costs more than 100 seconds.

Preproces & Postprocess
In our method, we add preprocess and postprocess proce-
dures to reduce the problem complexity and improve the re-
sult quality. Note that these techniques are not necessary for
our method, in Appendix , we list the experimental results
without any postprocess procedures. At the same time, we
have implemented these techniques in DGL or by a series
of tensor operations, so that both of them can be efficiently
processed by GPU.

1In their work, the node attribute is not probability distribution
but a binary vector indicating the selected colors. Nevertheless, the
conclusion still holds for a probability case.

Algorithm 1: ITERATIVEREMOVAL

Require: G = {V, E} → Target graph.
Require: k→ Number of available colors.
1: while ∃u ∈ V s.t. degree of u < k do
2: Update degree of the neighbor of u by subtracting one.
3: Remove u in G.
4: end while

Algorithm 2: POSTPROCESS

Require: G = {V, E} → Target graph.
Require: f → Coloring results.
1: Is changed← True;
2: while Is changed do
3: Is changed← False;
4: for u ∈ V do
5: for r ∈ {1, ..., k} do
6: if the conflict # reduces when set f(u) to r then
7: f(u)← r;
8: Is changed← True;
9: end if

10: end for
11: end for
12: for e = {u, v} ∈ E do
13: if the conflict # reduces when swap color of u, v then
14: swap color of u, v;
15: Is changed← True;
16: end if
17: end for
18: end while

Preprocess In the preprocess part, we remove the node
with a degree less than k iteratively. Because a node with de-
gree less than k will always not contribute to a conflict in the
optimal solution, this kind of removal will not introduce any
redundant conflicts. The algorithm is shown in Algorithm
1. There are many other graph simplification techniques in
the practical applications such as bridge detection (?), we do
not focus on these techniques, because the aim of our work
is not to develop a very effective coloring method by pow-
erful pre-process and post-process procedures, but to study
the power of GNNs on the coloring problems.

Postprocess In the postprocess part, we iteratively detect
1) whether a color change in a single node will decrease
the conflict number or 2) whether a swap of colors between
connected nodes will decrease the conflict number. The al-
gorithm is shown in Algorithm 2. Generally, we iteratively
check (L2 - L18) each node (L4 - L11) and each conflict
edge (L12 - L17), if one better solution is found, we modify
the coloring result to the better one and continue the itera-
tion.

Combining with ILP
After GDN generates the color distribution h ∈ Rn×k,
where n is the number of nodes and k is the number
of colors. We set up an adaptive threshold by the prob-
lem size O(nk). Specifically, we list a set of thresholds,
i.e., {0.9999, 0.999, 0.99, 0.95, 0.9, 0.8}, and we select the
threshold at index int(log nk) − 6. Then, all colors whose

probability is above the threshold are selected and those col-
ors whose probability is below (1− threshold)2 are forbid-
den. We then forward the partial result to the ILP solver and
get the final result. According to our result, for most graphs,
the problem size is reduced by over 70% and the method can
obtain the nearly optimal results within one second, which
cannot be processed by ILP within 24 hours.

Global method
During the exploration of GNNs, the locality of GNNs has
been widely observed as an intrinsic nature. The main con-
cern in previous works is that the locality inhibits GNNs
from detecting the global graph structure, thereby harming
the representation power. In the paper, we discuss one rep-
resentative ”global” technique: deep layers, and show that
it can enhance the discrimination power while still cannot
make AC-GNNd always global. In this section, we use the
notation of the local method defined in our paper, and look
back on previous solutions to see whether they provide a
truly global scheme by our definition. We hope that our anal-
ysis can provide some insights on the global GNNs for future
research. We first recap the definition of a local method:

Definition 3 (local method (?)). A coloring method f is r-
local if it fails to discriminate any r-local equivalent node
pair. A coloring method f is local if f is r-local for at least
one positive integer r.

To determine whether a coloring method is local or not,
we need to, by definition, determine whether the method is
able to discriminate two local equivalent nodes. Consider a
local equivalent node pair, say u, v, we can exam previous
global methods by testing whether the node embeddings of
u and v are the same. To simplify the discussion and only
focus on the main point, we summarize and distill the most
representative techniques as follows:

Distance encoding (?).
Distance Encoding is a general class of structure-related fea-
tures to enrich the sub-structure or even global structure in-
formation. In their work, the distance can be represented in
various forms and the distance encoding can be used in two
different ways, i.e., extra node features and a controller for
message passing. For simplicity, we only consider the case
where shortest path distance is used to measure distance and
employed as the extra node features. Formally, the input fea-
tures with distance encoding is:

h0
v = x0

v ⊕
∑
v∈S

d(u, v) (5)

Here, x0
v is the original node attribute, d(u, v) is the shortest

path distance between u and v,⊕ is the concatenation mark,
and S is the target structure defined in the original paper,
which can be the whole graph, i.e., S = V , or a substructure,
i.e., S ∈ V . We make the following statements:

Property 4. AC-GNNs enhanced by distance encoding ARE
global.

Proof. Note that a local method cannot discriminate any lo-
cal equivalent node pair. We can finish the proof by contra-
diction. Assume there exists r > 0 such that the enhanced
AC-GNN is a r-local method, i.e., it fails to discriminate
any r-local equivalent node pair. We build a connected graph
containing 2r + 3 nodes like a linked list. A figure illustra-
tion is given in Figure 1, where the number represents the
node index. Assume all nodes share the same node attribute,
i.e., x0

i = x0
j ,∀i, j ∈ {0, ..., 2r + 2}. Consider the two

nodes, vr and vr+1, their depth-r neighborhood are topo-
logically equivalent, i.e., BG(vr, r) = BG(vr+1, r). There-
fore, {vr, vr+1} is a r-local equivalent node pair. However,
the distance encoding of the two nodes are different, where∑
v∈G d(vr, v) = r2 + 3r + 3 but

∑
v∈G d(vr+1, v) =

r2 + 3r+ 2, resulting in a difference between h0
r and h0

r+1.
Similarly, the neighbors of vr and vr+1 have the different
distance encodings. Therefore, the distance encoding makes
the two local equivalent nodes differentiable by providing a
different input for both aggregation and combination func-
tions, which completes the proof. 2

0 1 r-1 r

2r+1 2r2r+2 r+1

…

…
Figure 1: A contradiction example to prove that the distance
encoding makes an AC-GNN global.

Readout function (?).
Barcel et al. (?) proposed a scheme to update node features
by aggregating not only neighbor information, but also the
global attribute vector. The function considering a global at-
tribute vector is also called the readout function. In their
work, it is demonstrated that even a very simple readout
function, i.e., summation of all node features, can capture all
FOC2 classifiers, which means that the representation power
is improved. Indeed, the global feature vectors contain some
information across the whole graph, and the distance encod-
ing discussed in Section is also a kind of readout function in
the form of distance measurement. But can we declare that
AC-GNNs become global methods as long as we use a read-
out function? Here, we discuss the simplest form used in (?),
aggregate-combine-readout GNNs (ACR-GNNs), where the
readout is calculated by the summation of all node features.
An ACR-GNN is formalized as follows:

h(i)
v =COM(i)(h(i−1)

v ,AGG(i)({h(i−1)
u : u ∈ N (v)}),

READ(i)({h(i−1)
u : u ∈ V})),

(6)
We make the following statement:

2We do not discuss extreme cases here, e.g. COM(·) = 0.

Property 5. ACR-GNNs are NOT global.

Proof. The intuition for proof comes from the fact that the
used readout function, i.e., summation of all node features,
keeps the same for all nodes. We first prove the following:

Corollary 4. If an ACR-GNN succeeds in discriminating a
node pair, an AC-GNN will also discriminate it.

Given a node pair {u, v} in the graph G. Let h(k)′

u and
h
(k)
u represents the node embedding of u after k layers by an

ACR-GNNA′ and an AC-GNNA respectively. Suppose af-
ter k layers, A′ discriminate them, i.e., h(k)′

u 6= h
(k)′

v , while
A fails to discriminate them, i.e., h(k)

u = h
(k)
v . It follows

that during the layer t from 0 to k − 1, h(t)′

u = h
(t)′

v and
h
(t)
u = h

(t)
v . That is, for any t from 0 to k− 1, we can create

a valid mapping φ such that h(t)′

v = φ(h
(t)
v) for any node

v ∈ V .
Consider the inequality after k layers, since node

u and v always have the same readout term, i.e.,
READ(k)({h(k−1)′

u : u ∈ V}), combing with Equation 6,
it must be the case that:

(h(k−1)′
v , {h(k−1)′

s : s ∈ N (v)}) 6=

(h(k−1)′
u , {h(k−1)′

s : s ∈ N (u)})
(7)

That is,

(φ(h(k−1)
v), {φ(h(k−1)

s) : s ∈ N (v)}) 6=
(φ(h(k−1)

u), {φ(h(k−1)
s) : s ∈ N (u)})

(8)

However, according to the assumption, the AC-GNN fails
to discriminate the two nodes, indicating that the inequality
above cannot hold. Hence we have reached a contradiction.

Therefore, we can conclude that the ACR-GNN also can-
not discriminate any local equivalent node pair, making it
a local method. Actually, this proof also demonstrates that
such an ACR-GNN is upper-bounded by AC-GNNs in the
terms of the discrimination power.

Identity-aware Graph Neural Networks (?).
Identity-aware Graph Neural Networks (ID-GNNs) focus on
solving the problem that the embeddings are only related to
the local subtree. The key insight is to inductively consider
the root node during message passing, i.e., whether the ag-
gregated node is the target node itself. If the aggregated node
is the target node, a different aggregation and combination
channel is used so that the ID-GNN is a heterogeneous one.
Formally, let the target node is u, i.e., we are calculating the
node embedding of u, then, the mediate features of other
nodes are given by:

h(i)
v,u = COM(i)(h(i−1)

v,u , {AGG(i)
1[s=u](h

(i−1)
s,u) : s ∈ N (v)}),

(9)

Here, h(i)
v,u represents the mediate feature of node v after ith

layer when calculating the node embedding of u, AGG(i)

contains two functions, where AGG(i)
1 is applied to the tar-

get node, and AGG(i)
0 is for other nodes. The simple hetero-

geneous scheme makes the target node different from other
nodes and therefore sensitive to the identity. However, such
a scheme still fails to discriminate c, d in the Figure 1(a) of
our paper. Based on this observation, we claim the following
property:

Property 6. ID-GNNs are NOT global.

Proof. We can finish the proof by showing that ID-GNNs
cannot discriminate any local equivalent node pair. Given an
ID-GNNs A with L layers, let’s consider a L-local equiva-
lent node pair {u, v} in G by an L-local isomorphism πL,
which means that the two subgraphs BG(u, L) and BG(v, L)
are isomorphic and xw = xπr(w) holds for every w ∈
BG(u, r). Here, we propose a stronger property:

Corollary 5. Given aL-depth ID-GNN and aL-local equiv-
alent node pair {u, v} by π, his,v = hiπ(s),u holds for any
iteration i and any node w ∈ BG(u, r) if i + d(s, v) ≤ L,
where d represents the shortest distance.

We prove the corollary by a nested induction.
First induction:
This statement, i.e., his,v = hiπ(s),u, apparently holds

when i+ d(s, v) ≤ 0. Suppose this holds if i+ d(s, v) ≤ k
(first assumption), we now prove that the statement will also
hold when i+ d(s, v) = k + 1 as long as k + 1 ≤ L.

Induction in the induction: For those nodes, say sk+1,
whose shortest distance with v is k + 1, i.e., d(sk+1, v) =
k + 1, we have h0

sk+1,v
= h0

π(sk+1),u
since {u, v} is a L-

local equivalent node pair and k + 1 ≤ L. Suppose his,v =

hiπ(s),π(v) holds if i = t and d(s, v) = k + 1 − t (second
assumption), we continue to prove that this will hold if i =
t+ 1 and d(s, v) = k − t.

Consider those nodes, say sk−t, whose shortest distance
between v is k − t, i.e., d(sk−t, v) = k − t, then ht+1

sk−t,v
is

given by:

ht+1
sk−t,v

=COM(t+1)(htsk−t,v
,

{AGG(t+1)
1[s=v](h

(t)
s,v) : s ∈ N (sk−t)}),

(10)

According to the first assumption, htsk−t,v
= htπ(sk−t),u

since i + d(sk−t, v) = k. We then consider the second
term in Equation 10, h(t)

s,u : s ∈ N (sk−t). The distance
between the neighbors of sk−t and the root node v ranges
from k − t − 1 to k − t + 1. For the neighbor nodes
sk−t−1 ∈ N (sk−t) with a distance k − t − 1 between v,
we have htsk−t−1,v

= htπ(sk−t−1),u
since t+d(sk−t−1, v) =

k − 1 ≤ k (first assumption). Similarly, for the neigh-
bor nodes s′k−t ∈ N (sk−t), the equation still holds since
t + d(s′k−t, v) = k ≤ k (first assumption). For the neigh-
bor nodes sk−t+1 ∈ N (sk−t), the equation htsk−t+1,v

=

htπ(sk−t+1),u
also holds since i = t and d(sk−t+1, v) =

k + 1− t (second assumption).

End of the induction in the induction: Hence by math-
ematical induction his,v = hiπ(s),π(v) is correct for all posi-
tive integers i and d(s, v). Therefore, we show that his,v =

hiπ(s),π(v) holds when i+ d(s, v) = k + 1 ≤ L, d(s, v) and
i are positive integers.

End of the induction: Hence by mathematical induction,
his,v = hiπ(s),u holds for any iteration i and any node w ∈
BG(u, r) if i + d(s, v) ≤ L, such completes the proof of
Corollary 5.

Based on Corollary 5, we can conclude that hLv,v = hLu,u,
indicating that the L-depth ID-GNN fails to discriminate u
and v, which completes the proof.

Randomness.
In the development of GNNs, random schemes are widely-
used and studied. Ryoma et al. (?) and Andreas et al. (?)
both prove that the distinct node attributes (even initialized
randomly) enhance the representation power significantly.
George et al. (?) propose a randomly coloring methods to
distinguish different nodes and break the local equivalence.
Position-aware GNN (?) makes use of the distance encod-
ing to design a position-aware GNN, where one of the dif-
ferences between distance encoding (?) is that the distance
is not measured with a pre-defined set S, but with a set of
randomly selected anchor node sets. In our work, we also
demonstrated that the randomness enhances the discrimina-
tion power of AC-GNNs, because nodes are not possible to
be local equivalent considering that their node attributes are
initialized randomly. Therefore, we want to know:

Q: Does randomness make AC-GNNs global?
Unfortunately, we are not able to answer the question now.

We can only declare that a random scheme indeed helps to
distinguish local equivalent node pair, but it may be still lo-
cal. The reason is that the AC-GNNs are not deterministic
anymore if we add some randomness, therefore, the defini-
tion of local methods is not available here. In some cases, the
upper bound (or lower bound) remains when the function be-
comes not deterministic, but a formal proof is needed in our
case. We look forward to a deeper discussion on the discrim-
ination power of randomness in AC-GNNs, and leave this as
our future work.

Color Equivariance
In the coloring problem, the node attribute and the final em-
beddings can be set as the probability distribution of colors,
i.e., color beliefs, as in (???). For example, the node attribute
(probability distribution) of u: u =[0.5 (red), 0.2 (blue), 0.3
(green)] means that the node u initially has 50% probability
to be colored as red, 20% as blue, and 30% as green. Un-
der this assumption, not only should we consider the order
equivariance, but also the color equivariance.

Equivariance (??) is an important property for a function
if it is defined on the input elements that are equivariant to
the permutation of the elements. Color equivariance is not
relevant to the discrimination power, whereas its importance
emerges in practical applications such as the layout decom-
position problem (?), where each color represents a mask

and some metal features (nodes) are pre-assigned to some
specific masks (colors). Let’s continue with the example u:
u =[0.5 (red), 0.2 (blue), 0.3 (green)]. If we are required
to pre-color node u to be red color and one solution for an
AC-GNN is to modify the node attribute of u to u =[1.0,
0, 0], i.e., predefine the possibility of red color as 100%. In
this case, if the AC-GNN is not color equivariant, the final
feature of u obtained by AC-GNN may not set red as u’s
color. That is, only color equivariant AC-GNN knows the
differences of colors.

To investigate conditions of functions to be color equivari-
ant, we first formalize the definition of an equivariant func-
tion:
Definition 2 (equivariance (??)). A function f : Rk → Rk is
equivariant if f(h)P = f(hP) for any permutation matrix
P ∈ Rk×k and feature vector h ∈ Rk.

Similarly, color equivariant follows the definition above,
where h ∈ Rk is the color belief. A simple AC-GNNAwith
L layers is color equivariant if and only if all functions in
{COM(i) = σ(xC(i)+yA(i)+b(i)) : i ∈ 1, ..., L} are color
equivariant. Then, the following theorem states the sufficient
and necessary conditions for A to be color equivariant:
Theorem 2. LetA be a simple AC-GNN and both input and
output be the probability distribution of k colors, A is color
equivariant if and only if the following conditions hold:
• For any layer i, all the off-diagonal elements of C(i) are

tied together and all the diagonal elements are equal as
well. That is,

C(i) = λ
(i)
C I + γ

(i)
C (11>),

λ
(i)
C , γ

(i)
C ∈ R ; 1 = [1, ..., 1]> ∈ Rk. (11)

• For any layer i, all the off-diagonal elements of A(i) are
also tied together and all the diagonal elements are equal
as well. That is,

A(i) = λ
(i)
A I + γ

(i)
A (11>),

λ
(i)
A , γ

(i)
A ∈ R 1 = [1, ..., 1]> ∈ Rk. (12)

• For any layer i, all elements in b(i) are equal. That is,

b(i) = β(i)1, β(i) ∈ R 1 = [1, ..., 1]> ∈ Rk. (13)

Proof. Let AGG(i) and COM(i) be the aggregation and
combination functions in the ith layer ofA.A is color equiv-
ariant if and only if all functions in {AGG(i),COM(i) :
i ∈ 1, ..., L} are color equivariant. the aggregation func-
tion is color equivariant clearly and thus we are left to con-
sider the color equivariance of combination functions. Con-
sidering the definition of color equivariant in Definition 4,
the color equivariance of combination function COM(i) =
σ(xC(i) + yA(i) + b(i)) is given by:

σ(xC(i) +yA(i) +b(i))P = σ(xPC(i) +yPA(i) +b(i)).
(14)

COM(i) is color equivariant if and only if the equation above
holds for any permutation matrix P ∈ Rk×k and any vec-
tors x,y. Considering it holds for any vectors x,y, We first

find three special cases of x and y, which are necessary con-
ditions and correspond to three conditions respectively:

Case 0. When y = ~0, we have that σ(xC(i))P =
σ(xPC(i)) holds for any P and x. That is, x(C(i)P −
PC(i)) = ~0 always holds, which reveals that C(i)P =
PC(i). C(i)P = PC(i) holds for any P follows that
C

(i)
m,m = C

(i)
n,n and C(i)

m,n = C
(i)
n,m for any m,n ∈ {1, ..., k}.

Therefore, all the off-diagonal elements of C(i) are tied to-
gether and all the diagonal elements are equal as well.

Case 1. When x = ~0, we can prove that all the off-
diagonal elements of A(i) are tied together and all the di-
agonal elements are equal as well following the similar in-
duction in case 1.

Case 2. When x = y = ~0, we have that σ(b(i))P =
σ(b(i)) holds for any P . Therefore, all elements in b(i) are
equal.

After proving that these conditions are necessary for a
color equivariantA, we proceed to prove that the conditions
above are already sufficient. Let C(i) = λ

(i)
C I + γ

(i)
C (11>),

A(i) = λ
(i)
A I + γ

(i)
A (11>) and b(i) = β(i)1, COM(i) is then

calculated by:

COM(i)P = σ(xC(i) + yA(i) + b(i))P

= σ(xλ
(i)
C IP + xγ

(i)
C (11>)P + yλ

(i)
A IP

+ yγ
(i)
A (11>)P + β(i)1P)

= σ(xPλ
(i)
C I + xP γ

(i)
C (11>) + yPλ

(i)
A I

+ yP γ
(i)
A (11>) + β(i)1)

= σ(xPC(i) + yPA(i) + b(i)). (15)

Therefore, COM(i) is color equivariant if and only if the
conditions hold, which completes the proof.

The theorem above is actually an extension of Lemma
3 in (?) from a standard neural network layer f = ε(Θx)
to a simple AC-GNN. Based on Theorem 2, a simple AC-
GNN is color equivariant when the trainable matrices/vec-
tors C,A, b in simple AC-GNN are calculated by several
scalars, i.e., λ, γ, β.

Supplementary Experiments
Experiment & model settings.
Experiments. We implemented our experiments in the
PyTorch Deep Graph Library (DGL) (?). We conducted all
experiments on a server with a Titan X GPU and an E5-2630
2.6 GHz CPU. Besides GNN-GCP and tabucol compared in
the paper, we also implement integer linear programming
(ILP) based solver by Gurobi (?), and three heuristics color-
ing methods which are used as baselines in (?). In the sup-
plementary experiments, 80% randomly selected samples in
the layout dataset are separated into the training dataset (for
trainable models) and the testing dataset contains the re-
maining samples. In the paper, we only run our model once
with a specified k and obtain the cost (conflict number), in

the supplementary experiments, we sometimes need to cal-
culate the chromatic number by our model, i.e., calculate the
minimum k that achieves a zero cost. To do this, we itera-
tively run our model and add k by one after each iteration
until a zero cost is received.

Network and training. Layout dataset is used as the train-
ing data and we will show that our GDN trained on these
small graphs can generalize to much larger ones such as Ci-
tation dataset. Other datasets are comprised of either (1) a
single graph, or (2) graphs with varying chromatic numbers,
which are not suitable for training, especially for other vari-
ations. During training, we initialize the variables of GDN
in each layer as:

λ
(i)
C = 1, γ

(i)
C = 0, λ

(i)
A = −1, γ

(i)
A = 0, β(i) = 0 (16)

The initialization is motivated by the truth that neighbors of
each node should be assigned as different colors as the node.

Datasets. We totally evaluate performance on five
datasets.

(1) The layout dataset, which is composed of many sim-
plified small but dense layout graphs transformed from cir-
cuit layout. This dataset is widely used as the benchmark for
the layout decomposition problem (???), a similar problem
in the industry manufacturing based on the graph coloring
problem. The number of available colors k is set to 3 fol-
lowing previous works;

(2) The citation networks (Cora, Citeseer, and Pubmed)
(?) that contains real-world graphs from academic search
engines. We follow the setting in (?) and regard them as the
coloring scenario for large but sparse graphs, hence dismiss-
ing their original node attributes and edge directions. k in
Cora, Citeseer, and Pubmed are set to 5, 6 and 8 respectively;

(3) COLOR dataset3 that contains medium sized graphs,
which is also the most essential dataset in the graph coloring
community (???). Here, we select instances following (?),
other instances show a similar trend in our experiments;

(4) Regular dataset that contains d-regular graphs with
size n. We use NetworkX (?) to randomly generate 100
graphs whose density is 16 and graph size is 128. The color
number is set to d/ log d+ 1 = 5.

For some tasks (Random, Citation) whose available color
numbers k are not specified, we assign k as the chro-
matic numbers of graphs, which are obtained from the CSP
Solver4. Each graph G is first preprocessed by removing ver-
texes iteratively following steps in (??).

Comparison with simple heuristics and ILP-based
method.
We compare our method with the other three heuristics col-
oring methods use in (?) and ILP based method. We only
compare these methods in the layout dataset, because ILP
even cannot solve others within 24 hours. The three heuris-
tic algorithms are summarized as follows:

Static-ordered: Coloring nodes in the order of node IDs.

3https://mat.tepper.cmu.edu/COLOR02/
4https://developers.google.com/optimization/cp/cp\ solver

Small Med. Large Huge

3

3.1

3.2

3.3

3.4

A
ve

ra
ge

pr
ed

ic
te

d
k

ILP Sorted
Static Dynamic
Ours

Figure 2: Comparison with other heuristic methods.

Sorted-ordered: Coloring nodes in the largest degree
first manner.

Dynamic-ordered: Coloring nodes in the largest degree
first manner, while the degree is updated when coloring
nodes, i.e., the neighbors of the colored node will decrease
their degree by one.

The results are shown in Figure 2. We measure the av-
erage predicted k (minimal color number to be conflict-
free) on four different graph size |V|, i.e., small (|V| <8),
Medium (8 ≤ |V| < 16), Large (16 ≤ |V| < 32), Huge
(32 ≤ |V|). All methods contain a pre-process procedure
for a fair comparison. From the results, we can see that Our
method achieves exactly the same performance with ILP in
all graphs except the huge one. Note that ILP is an optimal
coloring solver, indicating that our method reaches the op-
timality for relatively small graphs. However, even for such
small cases, three heuristic algorithms fail to be close to ILP
or our method. For large and huge graphs, the average k is
increased by more than 10% for static and dynamic algo-
rithms. With the growth of the graph size, our method be-
comes more and more advanced compared with these heuris-
tic algorithms.

Ablation study
Why training? In our proposed GDN, only some scalars
(λ, γ, β) need to be trained. Some may argue that these
scalars may be fixed so that the model can be free of train-
ing. Indeed, it is viable to design a training-free version, i.e.,
pre-define these scalars. For example, by following the intu-
ition that the feature of each node should be as different as
its neighbor, we can directly set λ, γ as positive and nega-
tive values respectively without training. However, it is not
easy to find a “best” value for λ, γ, β by theoretical anal-
ysis or by intuition. Therefore, we prefer a learning-based
method, which learns the best value through training. At the
same time, the training scheme has strong interpretability.
For example, the ratio between λ1A and λ1C indicates the rel-
ative importance between the features of each node and its
neighbors, and the ratio between scalars of different layers
(λ1A and λ2A) is the relative importance between neighbors
of different depths. The experiments about different selec-
tion schemes of λ, γ, β are covered in the following phase.

Model depth In our paper, we show that a deep AC-GNN
is a more powerful coloring solver (Property 3). Here, we
validate our conclusion by experiments. The results on lay-
out dataset are shown in Figure 3, where the solved ratio
is defined as in paper, i.e., the ratio between the number of
edges without introducing conflicts and the number of to-
tal edges. According to the results, we can conclude that a
deeper model indeed has a more positive influence on the re-
sults. However, the ratio improvement gradually slows down
and eventually stops as the model goes deeper: when the
model is deeper enough, it is able to cover all graphs in the
layout dataset. The results on regular dataset as shown in
Figure ?? also align with our proof. With the increase of the
model depth, our method becomes more powerful regard-
less of what the aggregation function is. The phenomenon
also demonstrates the theorem in (?), i.e., the product of the
GNN’s depth and width must exceed a polynomial of the
graph size to obtain an optimal result.

Injective function In Property 3, we demonstrate that an
injective aggregation and combination function guarantee
a more powerful AC-GNN. In our proposed GDN, we use
summation as the aggregation function since sum aggrega-
tors can represent injective function over multisets (Lemma
5, (?)). Here, we replace summation with mean aggregator
to see its performance in the regular dataset. The results are
shown in Figure ??, we can see that our method with sum
aggregator is always better than the mean aggregator among
all depths.

Integrated AC-GNN & Equivalent nodes In Property 1
and Property 2, we state the drawbacks of integrated scheme
and equivalent nodes in the coloring problem. To solve
these issues, we respectively summarize two rules to make
AC-GNN more powerful: Do not use integrated AC-GNN
and avoid equivalent nodes by assigning nodes different at-
tributes. We also try two variations of our methods, where
the first one integrates the aggregation and combination:

h(i)
v = λ

(i)
C (h(i−1)

v +
∑

u∈N (v)

h(i−1)
u) + β(i)1 (17)

The second one set the node attribute as the same one while
keep other steps the same. However, both variations fail to
discriminate any two nodes, resulting in a zero solved ratio
on all datasets after several layers.

Other discussion.
Postprocess. We discuss the influence of our proposed
GPU-friendly postprocess on the result quality and runtime.
We compare our method with postprocess and without post-
process on layout dataset (Table 1) and normal dataset (Ta-
ble 2). In the layout dataset, the relatively simple one, our
post process can reduce the average predicted k by 1%.
More importantly, the postprocess part makes our method
optimal for more than 99.9% layout graphs except for the
huge one, which occupies less than 0.1% in the total dataset.
In the harder normal dataset, the conflict will increase by
73.4% if postprocess is not used, as a scarifies, the runtime
is increased by 12.8% when using postprocess. However,

1 2 5 10 20 30

0.7

0.8

0.9

1

Depth

So
lv

ed
ra

tio

Training solved ratio
Test solved ratio

Figure 3: Comparison with different model depths on layout
dataset.

2 5 10 20 50

0.83

0.88

0.93

0.98
1.00

Depth

So
lv

ed
ra

tio
GDN-sum
GDN-mean

Figure 4: Comparison with mean aggregation on layout
dataset.

compared with the significant accuracy improvement, the
time loss is acceptable, especially under the occasion that
our method is 500× faster than a heuristic algorithm with
a similar-quality. In Table 2, our method without postpro-
cess sometimes even results in a better solution than the one
with postprocess, this happens because we randomly initial-
ize our node attribute, resulting in a slightly different solu-
tion everytime. Actually, we can further improve our perfor-
mance by a repeated running like previous coloring meth-
ods (???), but our target is to provide insights for powerful
GNNs on coloring problems instead of developing a power-
ful coloring solver by some simple tricks.

Other techniques for heterophily. In (?), they propose
a concatenation technique for tasks under heterophily, i.e.,
concatenate all features in the middle layers, and compute
the final embedding using the concatenated result. We also
implement it for comparison, the results are shown in Ta-
ble 1. According to the table, we can see that it fails to be
effective in the coloring problem, which even increases k a
little bit. Nevertheless, it is still an open and interesting ques-
tion to find the effective techniques in the coloring tasks, and

Table 1: The results of our methods without postprocess and
with concatenation on the layout dataset. k is the average
predicted chromatic number, and the ↑ (%) is the increase
compared with Our original model.

Small Med. Large Huge
ILP k 3.0505 3.0151 3.0425 3.0612
Ours k 3.0505 3.0151 3.0425 3.0645
Ours k 3.0548 3.0181 3.0451 3.0669
w.o. post ↑ (%) 1.4 1.0 0.9 0.8
Ours k 3.0512 3.0151 3.0425 3.0653
w. concat ↑ (%) 0.3 0 0 0.3

Table 2: The results of our method without postprocess on
the normal dataset. (Without ILP)

Ours Ours w.o. post
cost time cost time

jean 0 0.13 0 0.11
anna 0 0.17 0 0.15
huck 0 0.13 5 0.11
david 1 0.19 0 0.17
homer 1 0.29 1 0.26
myciel5 0 0.12 0 0.10
myciel6 0 0.21 1 0.18
games120 0 0.08 0 0.07
Mug88 1 0 0.01 0 0.01
1-Insertions 4 0 0.07 0 0.07
2-Insertions 4 2 0.08 1 0.07
Queen5 5 0 0.05 7 0.04
Queen6 6 4 0.05 5 0.04
Queen7 7 11 0.06 15 0.05
Queen8 8 7 0.06 16 0.05
Queen9 9 10 0.09 18 0.06
Queen8 12 7 0.09 14 0.08
Queen11 11 24 0.07 38 0.07
Queen13 13 42 0.08 68 0.08
ratio 1.000 1.000 1.734 0.872

even in the general tasks under heterophily.

Hyperparameters.
Trainning (For Table 1, Figure 2, and Table 2)
• lr = 0.001
• optimizer: Adam
• initial node attributes: all ones in Table 1. all random ini-

tialized in Figure 2 and Table 2.
• epochs = 10
• training data: layout dataset

GCN
• hide units: 64
• depth = 2/10, specified by GCN-2/GCN-10
• used dgl functions: dgl.nn.pytorch.GraphConv

GraphSAGE
• hide units: 64
• depth: 2/10, specified by SAGE-2/SAGE-10
• used dgl functions: dgl.nn.pytorch.SAGEConv
• aggregator type: pool

GIN
• hide units: 64
• depth: 2/10, specified by GIN-2/GIN-10
• used dgl functions: dgl.nn.pytorch.GINConv
• apply func: two layer MLP
• aggregator type: sum

GAT
• hide units: 64
• depth: 2/10, specified by GAT-2/GAT-10
• used dgl functions: dgl.nn.pytorch.GATConv
• num heads: 1

HybridEA We use the open-source code 5 to get the re-
sult.
• training data: layout dataset
• training
• L check: 490000
• E: 2.7182818285
• A: 10
• arf: 0.6

Ours (GDN)
• depth: 2/10 in Figure 2. 20 in Table 2.
• training time: 1h
• batch number: 1024, used in Layout dataset of Table 2.
• combing with ILP: used in COLOR dataset of Table 2.

Early stop when time is up to 1 minutes.
• post-process and pre-process: used in all methods except

Table 1.

5https:github.comcopyrightpoiiiiiHybrid-Evolutionary-
Algorithms-for-Graph-Coloring

