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Abstract— Multiple patterning layout decomposition (MPLD)
has been widely investigated, but so far there is no decom-
poser that dominates others in terms of both result quality
and efficiency. This observation motivates us to explore how
to adaptively select the most suitable MPLD strategy for a
given layout graph, which is non-trivial and still an open
problem. In this paper, we propose a layout decomposition
framework based on graph convolutional networks to obtain
the graph embeddings of the layout. The graph embeddings
are used for graph library construction, decomposer selection,
graph matching, stitch removal prediction, and graph coloring.
In addition, we design a fast non-stitch layout decomposition
algorithm that purely depends on message passing graph neural
network. Experimental results show that our graph embedding-
based framework can achieve optimal decompositions in the
widely-used benchmark with a significant runtime drop even
compared with fast but non-optimal heuristics.

I. INTRODUCTION

The semiconductor industry nowadays is greatly challenged
by extreme scaling which imposes severe issues on circuits
manufacturing. Among various advanced lithography tech-
niques, multiple patterning lithography (MPL) is one of the
most practical solutions to enhance the manufacturability and
has been widely adopted in industry [1].

The core problem of multiple patterning lithography is the
layout decomposition which assigns features on a layout to
separate masks for printability improvement and is also called
multiple patterning layout decomposition (MPLD). If two
features located closer than minimum coloring distance are
assigned to the same mask, a coloring conflict is introduced.
Additionally, stitches can be inserted to assist conflict resolv-
ing, at a cost of potential yield loss though. Therefore, the
objective of MPLD is to find a mask assignment for features
such that the number of conflicts and stitches are minimized.

Due to the NP-hardness of the general layout decom-
position problem, a variety of decomposition approaches
have been proposed to achieve high quality and efficiency.
These approaches can be roughly categorized into three types:
mathematical programming, graph-theoretical approaches and
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Fig. 1 An example of graph embeddings of layout graphs,
where the graphs are transformed into vector space.

heuristic approaches. The mathematical programming ap-
proach formulates the problem into integer linear program-
ming (ILP) [2]-[7], and its relaxations such as semi-definite
programming (SDP) [5], linear programming (LP) [8] and
discrete relaxation method [9]. Besides mathematical pro-
gramming, graph-theoretical approaches resolve the problem
with graph theories, e.g., the maximal independent set (MIS)
[10], the shortest-path [11], [12], and the fixed-parameter
tractable (FPT) [13] algorithms. Some heuristic approaches
are also proposed in [5], [10], [14], [15], which are generally
efficient but may have low quality. A recent work formulated
MPLD into an exact cover problem and achieved high quality
and efficiency with algorithm X [15]. Another extremely fast
solution is based on graph matching [14], in which a coloring
solution library for small graphs is constructed, and then
graphs are colored efficiently by graph matching.

Although many decomposition algorithms have been devel-
oped, there is no conclusion that one decomposer is always
better than another. The ILP-based method ensures optimality
but suffers from runtime overhead for large layouts. Exact-
cover (EC) based method demonstrates high efficiency for
large layouts at a cost of marginal degradation on the solution
quality. The graph matching-based method shows good perfor-
mance in both efficiency and quality for small graphs. But the
library size of this method cannot be too large and only non-
stitch graphs are supported, which is not applicable to large
layouts or layouts with stitches. This observation motivates
that it is worth exploring how to adaptively select the most
suitable MPLD strategies for a given layout, which is non-
trivial and still an open problem so far.

With successful deep learning applications in various fields
by learning from historical data, we can naturally cast the
problem into a classification task and leverage learning-based
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Fig. 2 An example of the routed layout and its graph representations. (a) The input routed layout; (b) The homogeneous graph
representation, where the black line represents the conflict relation; (c) The heterogeneous graph representation considering
stitches, where the stitch candidate is marked by the black dotted line, and the stitch edge is highlighted in blue. Here, the
relationship between p and v is: p; = {v1},p2 = {v2}, p3 = {vs, v4}.

approaches. We need to investigate as much information
on the graphs as possible and let our framework learn to
adaptively utilize proper decomposition algorithms. However,
graphs usually vary in terms of scale, making them hard to
digest for learning models. Therefore, we need to obtain graph
embedding under a unified shape to represent the graph as
shown in Fig. 1. Specifically, we use some techniques to gen-
erate the graph embedding such that the graph is transformed
into a vector space in a lower but unified dimension with
maximal representation capability and the powerful graph
embedding helps us to adaptively select the best decomposer,
where the best refers to the best solution quality at the lowest
runtime.

Among different graph embedding methods, graph neural
networks (GNN) are widely used for irregular graph repre-
sentations. In this paper, we develop several GNN variations
to obtain graph embeddings for different usages. First, we
propose a non-stitch layout decomposer that purely depends
on the graph embedding obtained by a specifically-designed
GNN. Second, The graph embeddings are used as represen-
tations to select ILP-based decomposer (optimal but slow),
EC-based decomposer (efficient but may not be optimal),
or GNN-based decomposer (efficient and nearly optimal but
does not support stitch). Besides decomposer selection, the
graph embedding helps us to avoid isomorphic graphs during
library construction. After that, it is used for matching graphs
efficiently in the library and predicting whether the stitch
edges in the layout graph are needed or not.

The main contributions are summarized as follows:

o We point to the redundancy of stitch candidates in the
layout graph, and develop a stitch redundancy prediction
method based on graph embeddings.

o We design a non-stitch layout decomposer that purely
depends on GNN.

o We design a graph library construction algorithm based
on graph embeddings for small graphs excluding isomor-
phic ones.

o We propose an adaptive workflow for efficient decom-
poser selection and graph matching using graph embed-
dings.

o We conduct experiments on widely used benchmarks and
experimental results demonstrate that our framework can
reduce the runtime by 97.5% while still preserving the
optimality compared with optimal but slow ILP-based

decomposer.

The rest of this paper is organized as follows. Section II
lists basic terminologies related to this work and gives the
problem formulation. Section III introduces existing state-
of-the-art decomposers and proposes a pure GNN-based de-
composer, which is specifically designed for the non-stitch
layout graphs. Section IV shows details of the GNN-based
framework, including graph library construction and GNN
model construction. Section V covers experimental results and
Section VI concludes the paper.

II. PRELIMINARIES
A. Multiple Patterning Lithography Decomposition (MPLD)

Given a routed layout represented by a set of polygonal
features, P = {...,p;, ...}, the minimal conflict space d, the
number of masks k, and other constraints like pre-coloring
constraints, the task of the MPLD problem is to assign masks
to features or subfeatures divided by stitches so that the
number of conflicts and stitches are minimized.

a) Conflict and stitch: A conflict happens when two
features whose relative distance is less than d are assigned the
same mask. For example, we say one conflict happens when
p1 and ps in Fig. 2(a) are assigned the same mask. Sometimes,
the conflict can be resolved by dividing the feature using two
masks. Such a division is called a stitch. The polygonal feature
p is split by stitch(es) into sub-features, i.e., p = {...,7;,...}.
To find effective stitches, many works [5], [16] generate a
series of stitch candidates in the features before decompo-
sition. These stitch candidates indicate possible locations of
stitches to prevent the occurrence of conflicts. The p; and
ps conflicts mentioned above can be resolved by inserting a
stitch candidate (marked by a black dotted line in Fig. 2(c)).
Previous works have shown that current stitch candidates are
able to cover all possible stitches [3], [5].

b) Graph format: MPLD problem can be modeled as a
variation of a pure graph-based problem, since the input layout
can be translated into an undirected graph § = (V, F) without
any information loss. When we consider the stitch candidates,
i.e., pre-define possible stitch locations, G is a heterogeneous
graph where the node v; corresponds to the subfeature r;,
and the edge set E is composed of two subsets: the conflict
edge set C'E and the stitch edge set SE. In the heterogeneous
layout graph, if one feature is split into multiple sub-features
by stitch candidate(s), it will be translated into multiple nodes



in the graph. To be more specific, one node is either 1) one
polygonal feature if there is no stitch candidate in the feature
or 2) one sub-feature split by the stitch candidate(s) in the
polygonal feature. That is, v; = r; € p or v — p if p does
not contain stitch candidate. The edge set £ = {CE,SE}
models the relations between nodes. Two nodes are connected
by the conflict edge e € C'E if their relative distance is less
than d and they do not belong to the same feature; Two nodes
are connected by the stitch edge e € SFE if they belong to the
same feature and are split by the stitch candidate (like node
vs and vy in Fig. 2(c)).

Otherwise, when no stitch is introduced, the layout graph
is a simple homogeneous graph, where the node corresponds
to one polygonal feature, i.e., v; — p;, and the edge only rep-
resents the conflict relation. We refer to such a homogeneous
graph as G, (parent graph). Clearly, any heterogeneous layout
graph G can be transformed to one homogeneous graph G,
by merging nodes connected by stitch edges. One example
of the two representations is shown in Fig. 2. When we
merge the nodes vs and vy in Fig. 2(c), the graph becomes a
homogeneous one as shown in Fig. 2(b).

¢) Objective function: From the perspective of a graph
coloring problem, the objective is to assign colors to each
node so that the weighted sum of conflict cost and stitch
cost is minimized. Let f : v — {1,...,k} be the color-
ing(decomposition) function and f(v) be the color assigned to
v by f. Given two features, p,,, = {...,75...},pn = {...,75...},
the conflict cost adds to one if at least two nodes in p,,
and p, 1) are connected by the conflict edge and 2) are
assigned the same color, i.e., 3r; € py,,r; € pp @ {vi,v; €
CE, f(v;) = f(v;)}. The stitch cost adds to one if the two
nodes connected by one stitch edge are assigned different
colors, ie., f(v;) # f(vj) : vi,v; € SE. Formally, the
objective can be formulated in Equation (1), where « is
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a parameter indicating the relative importance between the
conflict cost C' and the stitch cost s, which is usually set as
0.1.

B. Graph Isomorphism and Graph Matching

The formal definition of graph isomorphism and graph
matching is stated as follows [17]: Given two graphs §; =
(V1, E1), G2 = (Va, Ep) with [Vi| = |V3|, where Vi, V53, and

E,, E5 are corresponding node sets and edge sets, respec-
tively. The objective of graph matching is to find a node-to-
node mapping f : Vi — V5 such that (u,v) € F; if and only
if (f(u), f(v)) € Eo. This is called an isomorphism if such
a mapping f exists, and G; is said to be isomorphic to Gs.

In the graph library construction, graph isomorphism is
one of the most critical factors because there exists n! — 1
isomorphic graphs for any graph with size n. If not removing
these isomorphic graphs, the library will be occupied by re-
dundancy. Also, graph matching is inevitable when extracting
the coloring results of the matched node stored in the graph
library.

C. Graph Neural Networks (GNNs)

GNN takes the graph as input and returns the node em-
beddings or graph embedding. Nowadays, most widely-used
GNNs adopt an iterative manner composed of two steps:
aggregation and combination, which exploit the neighborhood
information and ego-information respectively. Specifically, for
each node v in graph G, the aggregation step aggregates
neighbor u’s features h, and obtains an intermediate rep-
resentation h, such that the final graph embedding is able to
contain graph structure information. During the combination,
GNN combines the aggregated representation h., with the ego-
feature h,, and the result feature becomes the input of the
next layer. GNN can be also explained in a message-passing
way where the intermediate representations can be viewed
as messages. The aggregation is the actual message-passing
phase and each node passes its message to its neighbors
along the edge. The combination is served as the integration
phase, in which each node integrates the received message
and reduces it into its new message. Each message-pass and
integration phase formulate one GNN layer. A general GNN
layer can be described as follows:

h$) = COM? (hG=1, AGGY ({RG™Y s u € N(v)})),
)

where hq(f) is the feature of node v after iy, layer, COM
is the combination function, and N(v) is the neighbors of
node v. The feature after the final layer is called the node
embedding of each node and the graph embedding by GNN
is usually obtained by some node invariant operations on node
embeddings such as summation or mean.

D. Problem Formulation

Given a set of layout graphs and two state-of-the-art de-
composers, ILP-based decomposer and EC-based decomposer,
our objective is to train several GNN variations to obtain the
graph embeddings such that 1) the embedding can help to
directly color the homogeneous layout graph, i.e., a layout
that does not contain any stitch candidate; 2) the embedding
can be used to build a graph library for small graphs, recording
the coloring solutions; 3) the embedding can predict whether
the stitch candidates in a heterogeneous layout graph are all
redundant; 4) any new graph can find the best decomposer
using its embedding; 5) any new small graph can find the



TABLE I Comparison among different decomposers

Methods Quality Efficiency  Flexibility  Stitch
ILP Optimal Poor Medium Yes
SDP Near optimal ~ Medium Medium Yes
EC Near optimal ~ Fast Strong Yes
Graph Matching Optimal Fast Poor No
Our GNN decomposer ~ Near optimal ~ Very fast Strong No

coloring solution directly through graph matching with graphs
in the library.

III. LAYOUT DECOMPOSITION ALGORITHMS
A. State-of-the-art Decomposers

Over the past few years, lots of decomposers are developed
to solve the MPLD problem. We compare all state-of-the-
art decomposers in terms of four perspectives: 1) Result
quality; 2) Efficiency; 3) Flexibility in multi-thread, GPU-
acceleration, larger layout, and more masks; 4) Whether the
method supports the stitch insertion. A general comparison
is shown in TABLE I. In the following paragraphs, we
simply introduce these existing decomposers and discuss the
performance from the four listed perspectives.

a) Integer Linear Programming(ILP): Given the objec-
tive function as shown in Equation (1), the problem can be
naturally solved by ILP [3], [5], where the node color f(v;) is
represented by 1-bit 0-1 variable(s). The ILP model for Triple
Patterning Lithography Decomposition (TPLD) is described in
Formula equation 3.

min Z Con + Z Sijs (3a)

€i; ECE,ri €pm,TEPn ei; ESE
st. w1 + a2 <1, (3b)

i1 + 251 < 14+ Chna,

Ve;; € CE,7; € pm,7j € P, (3c)
I—zn)+ (1 —zj1) <14+ Cpni,

Ve;j € CE,r; € P, 75 € Pny  (3d)
Zi2 + Tj2 < 14+ Chna,

Ve;; € CE,7; € pm,7j € P, (3e)
(1 =i2) + (1 = 252) <1+ Cpnaz,

Ve;j € CE,7; € pm,Tj € P, (39)
Crin1 + Cmna < 14 Cp,

Ve;; € CE,7; € pm,Tj € Pp. (3g)

In Equation (3), Cinn, Cmni, i5, and x;; are integer vari-
ables in {0, 1}. z,; represents the j;, bit to encode the color
of v;. If the mask number k goes beyond 4, the maximum
of j should also be larger than 2. C,, represents whether
there exists a conflict between p,, and p,. Cp,, is 1 when
both )1 and C,p2 are 1 by the constraint formulated in
Equation (3g). Cpn1(Cinnz) represents whether there exists
Ti € Pm,Tj € Dn, S-t., xi1(xs2) = xj1(xj2) and is controlled
by Equations (3c) and (3d) (Equations (3e) and (3f)).

The ILP-based method gives the optimal solution and sup-
ports the stitch scheme. However, the poor efficiency impedes
its deployment in a large layout, which becomes more and
more important with the development of the semiconductor
industry.

b) Semi-definite Programming (SDP): Solving Equa-
tion (3) using ILP is NP-hard. As an alternative solver, SDP
can approximately solve Equation (3) in linear time. The basic
idea is to program the colors by vectors so that the inner
product between two vectors gives different values based on
whether the two vectors (colors) are the same or not. For
example, in the TPLD problem [5], [18], [19], three colors are
assigned to three 2-dimension vectors, (1,0), (—1/2,v/3/2),
and (—1/2, —/3/2) respectively. Then, given any two vectors
v;, v;, which represent the colors of node ¢ and node j, we
have the following properties:

f(vi) = f(v))

17
v {1/2, f(wi) # f(vy)

Therefore, the MPLD problem can be solved by semidefinite
programming in polynomial time if we relax the discrete
values of v to a continuous one. Given the solutions of SDP, a
fast heuristic mapping process is used to map the continuous
solutions to coloring results.

The SDP-based method makes a good balance on the
efficiency and performance and can be applied to the stitch
case by simply adjusting the cost function. Nevertheless, the
vector programming process for the node color in [5] is
specifically designed for the TPLD problem, when extended to
the four masks (quadruple patterning problem) or even more
masks, the dimension of the vector will also increase, which
harms the efficiency.

c) Exact cover (EC) based method: EC-based method
[16] transforms the MPLD problem to an exact cover problem,
and solves it by a customized and augmented combination
of dancing links data structure and Algorithm X* (DLX).
Here, the routed layout is translated into a 0-1 matrix. In
the matrix, each row index represents one possible coloring
solution of a single feature p. If there is no stitch candidate
in p, there will be k rows, representing k different color
assignments of p. Otherwise, there will be more than k rows
to represent different color combinations of subfeatures split
by stitch candidates. The column index models the conflict
relation to assure that two nodes connected by the conflict
edge are not assigned the same color. Finally, the EC-based
method returns a set of rows, which can be translated back to
the decomposition result of the MPLD problem.

The EC-based method demonstrates excellent efficiency,
also, it is applicable for the stitch scheme and multi-thread.
Moreover, it shows a relatively fast execution for very large
cases. However, for some cases, it cannot be optimal, and the
result quality may vary largely depending on the structure of
the layout graph and the node ordering in the matrix.

d) Graph matching based method: The basic idea of
graph matching is to build a graph library that contains

4)
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Fig. 3 The histogram of the number of graphs (|G|,orange) and graphs that need not stitches (|ns-G|,gray) in (a) small layouts

and (b) large layouts.

graphs and corresponding solutions. Each time when we try
to decompose the layout, the system will match the target
layout graph to graphs in the library. If a match is found,
the corresponding decomposition solution will be returned.
Generally, since the library can be constructed offline, i.e.,
before any decomposition, the decomposition runtime is only
influenced by the efficiency of the matching algorithm and the
size of the library. However, the graph library size explodes
when increasing the graph size or considering the stitch. In
[14], the graph library is not applicable to stitch and only
contains graphs with a size less than seven. Therefore, the
flexibility is poor compared with other decomposers.

B. Non-stitch Layout Decomposer by GNNs

Given the overwhelming success of GNNs, we may attempt
to solve the MPLD problem by GNNs directly. However,
as a heterogeneous variation of the coloring problem, the
MPLD problem contains both stitch edge and conflict edge,
making it more difficult than a pure coloring problem. On the
other hand, there exist lots of redundant stitch edges (stitch
candidates) which do not play a role in the final decomposition
results. The histogram shown in Fig. 3 empirically states the
phenomenon: Over 80% layout graphs do not have stitches
in the final results while most of them contain stitch edges.
Although it is not easy to decompose the layout graph by
GNNs directly, the stitch redundancy provides a vision of
GNNs applying to the prediction of redundant stitch edges
and then conducting a non-stitch layout decomposition. In the
following section, we first introduce how graph embedding is
used for the stitch redundancy prediction, and then propose a
pure GNN-based method for the decomposition of non-stitch
layouts.

a) Stitch Redundancy Prediction: Despite the fact that
the state-of-the-art stitch candidate generation algorithm is
able to enumerate all stitches, there are a huge number of
stitch candidates that are not stitches in the final result, i.e.,
the two nodes split by the stitch candidates are assigned the
same color in any optimal solutions. One example of the
redundancy is given in Fig. 4, where each stitch candidate
splits the corresponding feature into two sub-features and
generates two nodes connected by the stitch edge. Since both
nodes are assigned the same color in the optimal solution,

Fig. 4 The example of redundant stitch candidates. In this
layout graph, both stitch candidates (highlighted in blue)
finally do not generate any stitch.

these redundant stitch candidates can be removed without any
influence on the coloring quality.

On the other hand, useless candidates will increase the
problem complexity largely and result in significant drops
in efficiency performance. The layout statistics in Fig. 3
demonstrates that there exists a large portion of layout graphs
that totally need no stitches. To avoid the waste of compu-
tation resources and further improve the efficiency of our
decomposition framework, we propose a graph embedding
based method to remove these redundant and useless stitch
candidates. The basic idea is that we can predict whether
these stitch candidates are redundant or not. If redundant,
these stitch candidates can be eliminated by merging those
nodes split by stitch edges. Since the graph embedding can
be obtained in parallel with other embeddings and the merge
operation is processed in a constant time, the additional time
cost can be ignored in light of the huge benefit from removing
redundant stitches.

Although successful predictions bring about efficiency im-
provement, it is not easy to accurately predict which stitch
candidate can be removed. The optimal solution is usually
not unique: one stitch candidate can be redundant in one
optimal solution while not in another one. The stitch candidate
{vs,v4} shown in Fig. 5 is a representative example. In
Fig. 5(a), edge {v3,v4} is redundant since node v3 and vy
are assigned the same color. On the contrary, the two nodes
vs and vy have different colors in another optimal solution
shown in Fig. 5(b), indicating that the stitch edge {vs,v4}
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Fig. 5 The example of alterative solutions for stitches. The
activated stitch is {vs,v6} in (a) and {vs,v4} in (b) respec-
tively.

Algorithm 1 Pure GNN-based Layout Decomposer

Require: RGCN, < RGCN trained for generating graph em-
bedding, where the embedding is used to predict the stitch
redundancy;

Require: ColorGNN < GNN trained for graph coloring;

Require: G < Target graph;

Require: iter <— Number of repetitive executions;

Ensure: & — The coloring results for each node in G;

I: h, + RGCN,(9);

2: confidence <+~ M LP(h,);

3: if confidence < b then

4 Decompose G by other decomposer;

5 return the decomposition solution;

6: else

7: Gp < Remove all stitch edges in § and merge related nodes;

8: end if

9: for i € {1,...,iter} do

0 x < Randomly initialized probability distribution of colors
for each node;

11: ¢c; < ColorGNN (SGp, x);

12: end for

13: return the best solution in {e1, ..., Citer };

cannot be removed.

Considering the non-uniqueness of stitches as illustrated
in Fig. 5, we regard the problem as a graph classification
problem rather than an edge classification problem. That is,
the algorithm predicts whether the stitch candidates in a
graph are all redundant (graph-level) instead of whether stitch
edge(s) in the graph are redundant (edge-level). Therefore,
the redundancy prediction can be implemented as a 2-class
classifier on graph-level and simply modeled by a multi-layer
perceptron (MLP) that uses the graph embedding as input.
A detailed illustration can be found in Algorithm 1 (lines 1—
7). After obtaining the corresponding graph embedding h,
(line 1), h, is fed into the implemented MLP and predicts a
confidence value (line 2). After prediction, if the confidence
of the graph is larger than a specific bar, say b (lines 6-7),
the graph will merge all stitch candidates in the graph, which
results in a non-stitch graph G,,.

b) Non-stitch GNN decomposer: Although our redun-
dancy prediction is only applicable for stitch-enabled cases,
which may not be useful in some foundries, the follow-
ing Non-stitch GNN decomposer can directly help those

foundries. We refer to our non-stitch GNN decomposer as
ColorGN N, which uses the message passing GNN as a back-
bone, and gives a prior that the node embedding represents
the probability (belief) of color assignments. The detail is
described as follows: Given a non-stitch graph G, = {V, E},
where £ = {CFE}, we first randomly assign each node
v € V a discriminative attribute x, € R¥ that represents
the probability distribution of k masks.

In the aggregation step, we simply sum up the features
from all neighbors. However, for each aggregation iteration,
we randomly sample neighbors to do the summation. Such
a random sampling scheme improves the efficiency and the
inserted randomness helps to avoid local optimum in the
coloring problem [20]. Formally, let cgf) € R* be the result
returned by AGG" for the node v in the i-th layer, the aggre-
gation layer can be represented by: mq(f) = ZueN,(U) e\ 71),
where N’ (v) is defined as the subset of N(v) and is selected
randomly.

In the combination function, we define the coM® as a
simple trainable weighted summation between ego-feature and
features from neighbors:

el = clIAY + m(PAY. 5)

Here, both Ag) and /\EZ) are trainable variables. Finally, the
color of each node is assigned based on ¢; that represents
the color belief. A figure illustration of the whole process
is shown in Fig. 6. In our implementation, we iteratively
execute the GNN multiple times (5 times in our experiments)
by setting different initializations (lines 9—13 in Algorithm 1)
. Finally, we select the best solution among all iterations.

IV. ADAPTIVE DECOMPOSITION FRAMEWORK

In this section, we first briefly present the workflow of our
proposed framework. Then we describe the GNN used for
graph embedding, and how the graph embedding is used for
graph library construction, graph matching, and decomposer
selection.

A. Overview

Combining with the pure GNN-based decomposer intro-
duced in Section III, we propose a decomposition framework
that selects the decomposition method adaptively and supports
GNN-based decomposer. The framework is divided into of-
fline and online parts by whether the operation is needed in
the decomposition.

The offline part is like a pre-processing step, and done
before any decomposition. Generally, it includes GNN model
training and graph library construction. We first train all
GNN models required in the decomposition, including two
Relational Graph Convolutional Networks (RGCNs) [22] and
one proposed GNN decomposer for non-stitch decomposition.
A summary of all GNNs used in our framework is shown in
TABLE II. Overall, the first RGCN model RGCN is trained
to select the better decomposer in EC and ILP. The generated
graph embedding h is also used to build the graph library
and achieve efficient graph matching. The second RGCN
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Fig. 6 A toy example on how ColorGN N gives the coloring results directly. (a) The randomly initialized color distribution;
(b) The message passing procedure finished by trainable C'olorGN N; (c) Final results (color distribution) of C'olorGN N.

TABLE II GNNs used in our framework

Steps Models Usage
Graph library construction Avoid isomorphism to reduce library size
Graph matching h = RGCN(9) Find the matched graph in the graph library

Algorithm selection

Select the better decomposition algorithm in EC/ILP

Stitch redundancy prediction h, = RGCN,(9)

Predict whether the stich edges in G are all redundant

GNN decomposer c = ColorGNN(Sp)

Decompose non-stitch graph Gy,

p
Selection Selected Decomposer

ILP ILP )
T e
EC \( EC J

'N
Y (" Eliminate
( g, [Fizdl )—(stitch edges}
f J

(Graph Simpliﬁcationj | ( Selection )—'—{Selected Decomposer
| |
l 1

T NfE—— 1N
Node I}UI;IS )l{ Graph Matched?
max size!

(Graph SimpliﬁcationH RGCN J

Fig. 7 The workflow of our framework. Purple blocks are
executed in our framework while the yellow blocks are
directly executed in OpenMPL [21].
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( Stitch Insertion J

model RGCN,. is to predict whether the stitch edges in G
are all redundant. RGCN and RGC N, have the same model
architecture, but they are trained for different tasks so that
their graph embeddings are expected to be different. Besides
the training of all models, we use graph embeddings obtained
by the trained RGCN to build the isomorphism-free graph
library.

When the above offline part is done, we can execute layout
decomposition following the workflow shown in Fig. 7. The
layout graph transformed from the original layout is simplified
by several simplification techniques such as Independent
Component Computation (ICC) [5], Hide Small Degrees

[5], [14], Biconnected Component Analysis [3], [4]. Next,
stitch candidates are inserted by pattern projection [5]. Stitch
candidate insertion transforms the simplified homogeneous
graphs into heterogeneous graphs which contain both conflict
and stitch edges. After another series of simplification steps
for the heterogeneous graphs, these simplified heterogeneous
graphs are fed into RGC'N and RGC N, to obtain the graph
embeddings h and h,. For a graph whose graph size is under
the size constraint max_size, h is used to determine whether
there is an isomorphism between the target graph and graphs
in the library. If the isomorphic graph is found in the library,
the corresponding node embeddings of two graphs are used
to get the node-to-node mapping and directly return the final
coloring result by the mapping in the library. If no isomorphic
graph is found or the graph size is larger than max_size, the
generated graph embeddings h and h, help to select the best
decomposers. During the selection, h,. is first used to predict
whether the stitch edges are redundant. If predicted as yes,
these stitch edges are eliminated by merging all stitch edges
so that the heterogeneous graph G is simplified as a non-stitch
homogeneous graph G, (parent graph). Then, our proposed
GNN decomposer ColorGN N is adopted to decompose G,,.
If predicted as no, an ILP/EC selector based on h is going to
select which one is the better algorithm for the target graph.
Here, a better algorithm means the one achieving lower cost or
higher efficiency when the cost is the same. After all graphs
are decomposed, a color recovery process is executed to get
the final layout decomposition results.

B. Graph Embedding Neural Network

Considering that the simplified graph contains both conflict
edges and stitch edges, we apply RGCN [22], a GCN variation
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Fig. 8 Overview of the process for graph embedding.

specifically for heterogeneous graphs, to obtain the graph em-
bedding. The process for graph embedding is shown in Fig. 8.
The original layout is transformed into multiple heterogeneous
graphs by graph simplification and stitch insertion. Those
simplified graphs are fed into the two-layer model. For each
node v; in a graph § = {V, E} , E = {CE, SE}, the node
representation hgl—H) c R at the (I + 1)y, layer of the
neural network can be calculated by the following formula:

W =RerU | Y3 wORY 40 |,
ecE jEN?

where D is the dimension of node representation at the I,
layer, wl) ¢ RPVXDY ¢ 4 learnable weight matrix of
edge type e € Y and N denotes the set of neighbor nodes
of node v; connected by e. Intuitively, RGCN specified in
Equation (6) works like the classical GCN, as both neural
network layers contain two phases, aggregation and combi-
nation. The difference is that edges in GCN share the same
learnable weight in each layer on the combination phase while
only edges under the same edge type share the weight matrix
for RGCN, which means that the message integration for
different kinds of edges is independent. One central issue of
the different weight matrixes strategy is the exploding number
of parameters. Also, this strategy can easily lead to overfitting.
These issues are solved by regularization of weight and we
adopt a basis decomposition [22], in which each weight matrix
Wel) is a linear combination of basis transformations V()
and defined by:

B
We(l) _ Z (57(}12)‘/1)(”, (7)
b=1

where Vl')(l) e RPUTVxDY is one of the multiple basis
transformations and 65? is the learnable coefficient.
The input feature of node v; is defined as:

h§°) = Z Iie, ;ecry + aye, sesEY)S ()
JEN;
where I ) is an indicator function and v = —0.1 is a user-

defined parameter following the general stitch cost. After
obtaining the node embeddings by RGCN model, for the

algorithm selection, we calculate the graph embedding by the
summation of the node embeddings. A summation is used
because the graph size may influence results of the two sub-
tasks. Formally, we have h = ). hEO“t), where hl(.out) is
the node embedding of node v;. As for the stitch redundancy
prediction, we use max-pooling because it is some subgraph
structures that determine whether there exist redundant stitch
edges or not.

C. Graph Library Construction

Generally speaking, it is possible to enumerate all the valid
graphs under a size constraint such that we can build up a
graph library to accelerate decomposition by simply matching
the graph with graphs in the library and collecting the coloring
information stored in the library.

Previous work [14] follows the algorithm described in
[23], [24], and constructs a graph library that contains all
homogeneous graphs (23 in total) with node numbers less
than seven. However, the graph in that library does not contain
stitch edge, which means that one heuristic stitch insertion and
coloring method should be used if the non-stitch graph is not
colorable. To store graphs containing stitch edges, we propose
an isomorphism-free heterogeneous graph library construction
algorithm that contains all possible graphs with both stitch
edges and conflict edges.

Different from the general 2-connected graph described in
[23], the graph transformed by circuit layout has some specific
rules, especially after stitch insertion. The rules are stated as
follows:

o The degree of each node in G, is at least the mask
number £.

o The degree of each node in G is at least two.

o One node pair {u, v} cannot be connected if u, v are in
the stitch relation. The stitch relation of two nodes means
they belong to the same feature in the original layout.

o For any two nodes in the stitch relation, their neighbors
connected by the conflict edges cannot be the same.

The pseudocode of our library construction algorithm is
illustrated in Algorithm 2. Firstly, we enumerate G, by the
method in [23] (line 2), which generates an isomorphism-free
2-connected graph set and removes all invalid graphs(line 3).
Then for each G,,, we enumerate valid § which satisfies the



Algorithm 2 Graph Library Construction

Require: max_size — Maximal graph size.
Ensure: L — The isomorphism-free library of valid graphs;
I L+ {};
Sp < Generate graphs following method in [23];
Sp < Remove invalid Graphs in Sp;
S < Enumerate graphs containing stitches from graphs in Sj;
for G € .S do
if G satisfies layout graph rules then
h + normalize(RGCN(G));
L}, + Extract graph embeddings stored in the library;
if max(Lp x h) <1 then
Decompose G with ILP-based decomposer;
Insert § and corresponding graph embedding, node
embeddings, and decomposition result into L;
12: end if
13: end if
14: end for
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size constraint and all the rules above by splitting nodes in
9, and inserting stitch edges (lines 4-6). Because there may
be multiple isomorphic graphs during the enumeration of G,
we use graph embedding to avoid isomorphism. Specifically,
every time when the enumerated G is going to put into the
library, § will be fed into the RGCN model (line 7) and
the obtained normalized graph embedding h is compared
with the embeddings stored in the library L) € RF*P
(line 8), and a vector-matrix multiplication is performed i.e.,
m € RF = L, x h, where k is the number of graphs stored in
the library temporarily. Whether there is an isomorphic graph
in the library or not is determined by checking the maximum
element in m (line 9) because two unit vectors are equal if
and only if their product is 1. The idea is based on the fact that
a GCN-based model is insensitive to the node order, which
means that the graph embeddings of all isomorphic graphs by
a GCN-based model are totally the same. After isomorphism
checking, § won’t be inserted into the library if there is
an isomorphic graph. Otherwise, § will be decomposed by
ILP-based decomposer for optimal solution (line 10), then
graph G with its optimal coloring result, corresponding graph
embedding and node embeddings will be stored in the library
(line 11).

D. Graph Matching and Decomposer Selection

1) Graph Matching: In the decomposition process, when
the graph embedding is obtained and the graph size is under
the limitation, we directly match the graph with graphs in the
library to obtain the decomposition result. We use the obtained
graph embedding to find isomorphic graphs in the library, then
we use the corresponding node embeddings to find the node-
to-node mapping and return the solution directly.

To illustrate the process clearly, we provide a simple
example and explain the details step by step. The graph
library £ in this example is composed of three graphs, in
which each graph has four nodes and the dimension of graph
embedding is two. The library stores all information of graphs
needed by our framework including its node embeddings

L, € R3>*4*2_ oraph embeddings £, € R3*? and optimal
solutions L4 € R**3:

o8 o peasy [0

Lo=|o1 06 QFOf—? =5 50
—0.2 0.8 1 0 2
L

Different colors represent different graphs in the library.
Take a target graph G with four nodes as an example, we use
RGCN model to obtain the corresponding node embedding
u € R**2 and graph embedding h € R?, where h = )", u;:

0.3 —10
02 08 0.6

“=1o4 o4 |P= {0.8] ' 2
0.1 0.6

We first multiply the graph embedding h with graph
embeddings £, in the library i.e., m € R? = L, x h:

0.6 0.8 0.6 1
m = 0.6 —-0.8]| x [0.8} = |—-0.28
’ 0.6

1 0
Ly h

Then the matched graph index ¢ in the library is defined

by:

ifmax(m) = 1; (10)

_ arg max(m),
1=
-1, otherwise,

where —1 means there is no isomorphic graph matched in
the library such that the graph matching process is terminated
and redirected to decomposer selection. Otherwise, £,,[i] is
extracted and compared with the target graph’s node embed-
ding to get the final node-to-node mapping. The matching
method is also based on the node order insensitivity of the
GCN-based model: if the input feature doesn’t contain any
node order information such as a one-hot vector of the node
order, the final graph embedding will be order-invariant. In
this example, m[0] = 1, therefore i = 0, representing that the
first node embedding £,,[0] is used to compare with w.

The node-to-node mapping f is executed by comparing two
node embeddings and formulated by:

f) =k, if u[j] = L,[i][k] for 4,k in {0,...,|G| — 1},
(an
where |G| means the number of nodes in the graph. In this
example, |G| is 4 and f is then defined by: f({0,1,2,3}) =
{1,3,0,2}.
After f is found, the solution s can be matched quickly
by:

slj] = Ls[f ()], for j in {0,..., |G -1},

so the final solution of G in this example is mapped as
[2,1,1,0].

12)



2) MPL Decomposer selection: When the size is larger
than the size limitation or no mapping is found, the graph
embedding h is used to select the decomposer (ILP/EC).
Therefore, the decomposer selector can be regarded as a
2-class classifier and simply modeled by a summation of
one trainable weight matrix W, € R?*P and a bias vector
b, € R? combined with arg max function, which can be
formulated as:

y = argmax(Wgh + by), (13)
where h € RP is the graph embedding obtained by RGCN
model with dimension D. The final decomposition result is
then generated by the selected decomposer.

V. EXPERIMENTAL RESULTS

a) Benchmark and experimental settings: The experi-
ments are performed on the scaled-down and modified ISCAS
benchmarks, which are widely used in previous works [5],
[14], [15]. The framework is mainly implemented in Python
with PyTorch [25] and DGL [26] and integrated into the
open-source layout decomposition framework OpenMPL [21].
Fig. 7 specifies the detailed task execution platform of the
workflow. We follow the same settings in [5], [14], [15] on
the minimum color space, where the first ten cases are set to
120 nm and the last five cases are set to 100nm. The cost
of stitch is set to 0.1 such that the decomposition cost is
calculated by cn# 4+ 0.1st#, mask number is set to 3 and the
graph simplification level in OpenMPL is 3. It should be noted
that our graph embedding, as well as the whole framework,
is flexible to be extended to other decomposition tasks under
different lithography constraints.

b) Model and training settings: Generally, we prepare
and train three independent GNN models for 1) graph match-
ing and decomposer selection (RGC N); 2) stitch redundancy
prediction (RGCN.,.), and 3) non-stitch GNN decomposer
(ColorGN N). The two RGCN models contain two layers
whose output dimensions are 32, 64 respectively such that the
dimension of graph embedding is 64. ColorGN N contains
10 layers. The training strategy of RGCNs follows the idea
of K-fold cross-validation, specifically, each time two of the
15 layouts in the benchmark are used as the test/validation
set separately, and the other 13 layouts are put together to
form a training set. Therefore, there are 15 trained models
for 15 layouts following the same model configurations. In
the algorithm selection, the label of each simplified graph is
set as 0 (ILP) if the cost by ILP-based decomposer is smaller
than EC-based decomposer and 1 (EC) for other cases. In
the stitch redundancy prediction, each layout graph is labeled
as “not redundant” if there exists at least one stitch in the
optimal solution obtained by ILP method. In the training phase
of RGCN(RGCN,), we concatenate the graph embedding
network with the MPL for decomposer selector (stitch redun-
dancy prediction) such that the cross-entropy loss function

TABLE III F1 score comparison of (a) proposed RGCN and
(b) conventional GCN.

(@) (b)

Label Label
ILP EC ILP EC
. ILP 13 682 . ILP 2 244
Predicted EC ‘ 0 5900 Predicted EC ‘ 1 6338
Recall 100.0% Recall 15.4%
Fl1-score 0.0367 Fl1-score 0.0154

can be adopted. The training of C'olorGN N relies on an un-
supervised margin loss, formulated by:

min Z max{m — d(¢y, ¢,), 0},
{u,v}eCE

(14)

m is a pre-defined margin and set as 1. The loss function
is motivated by the truth that two connected nodes should be
assigned different features. In all GNN-related operations, the
simplified graphs are batched together for efficient inference.
All the experiments are conducted on an Intel Core 2.9 GHz
Linux machine with one NVIDIA TITAN Xp GPU.

A. Effectiveness of model selection

In the first experiment, we compare the effectiveness of
our proposed RGCN model with conventional GCN model.
The classical GCN model only supports homogeneous graphs
while is not compatible with this task. Therefore, we slightly
modify the message passing function by multiplying the edge
weight o, for different edge types:

u§l+1) = ReLU Z Z aeW(Z)ugl) +u§” ,  (15)

c€E jENE

Here a. follows the weighted cost setting and is set as 1 for
conflict edge and -0.1 for stitch edge. The result is illustrated
by the confusion matrix shown in TABLE III, where each row
contains the number of graphs selected to be decomposed by
the corresponding decomposer while each column contains the
number of graphs labeled by the corresponding decomposer.
For example, the element (0,0) in the confusion matrix repre-
sents the number of graphs that are labeled as positive (ILP)
and also selected to be decomposed by ILP-based decomposer.
In the experiment, we use two more metrics, recall and F1
score. Recall is used to measure the proportion of ILP-labeled
graphs that are correctly identified, and therefore influences
the decomposition quality directly. Fl-score is a general
metric for the model’s accuracy. According to TABLE III,
we can see that the Fl-score of our model is more than
2x of that in the conventional GCN, which demonstrates
the powerful representation capability of our model compared
with conventional GCN. Another important point is that our
model classifies all the graphs labeled as positive correctly
such that our recall achieves 100% while conventional GCN
only classifies 15.4% correctly.



TABLE IV Decomposition Cost Comparison

Circuit ILP SDP EC [27] [27] + GNN decomposer
st# cn# cost st# cn# cost st# cn# cost st# cn# cost st# cn# cost
C432 4 0 0.4 4 0 0.4 4 0 0.4 4 0 0.4 4 0 0.4
C499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cc880 7 0 0.7 7 0 0.7 7 0 0.7 7 0 0.7 7 0 0.7
C1355 3 0 0.3 3 0 0.3 3 0 0.3 3 0 0.3 3 0 0.3
Cc1908 1 0 0.1 1 0 0.1 1 0 0.1 1 0 0.1 1 0 0.1
Cc2670 6 0 0.6 6 0 0.6 6 0 0.6 6 0 0.6 6 0 0.6
C3540 8 1 1.8 8 1 1.8 8 1 1.8 8 1 1.8 8 1 1.8
C5315 9 0 0.9 9 0 0.9 9 0 0.9 9 0 0.9 9 0 0.9
C6288 205 1 21.5 203 4 24.3 203 5 25.3 205 1 21.5 205 1 21.5
C7552 21 1 3.1 21 1 3.1 21 1 3.1 21 1 3.1 21 1 3.1
51488 2 0 0.2 2 0 0.2 2 0 0.2 2 0 0.2 2 0 0.2
S38417 54 19 24.4 48 25 29.8 54 19 24.4 54 19 24.4 54 19 24.4
535932 40 44 48 24 60 62.4 46 44 48.6 40 44 48 40 44 48
538584 117 36 47.7 108 46 56.8 116 37 48.6 117 36 47.7 117 36 47.7
515850 97 34 43.7 85 46 54.5 100 34 44 97 34 43.7 97 34 43.7
average 12.893 15.727 13.267 12.893 12.893
ratio 1.000 1.220 1.029 1.000 1.000

TABLE V Decomposition Runtime Comparison

Circuit | ILP | SDP | EC | [27] | [27] + GNN decomposer
Cc432 0.486 0.016 | 0.005 | 0.007 0.024
Cc499 0.063 0.018 | 0.011 | 0.015 0.023
€880 0.135 0.021 | 0.010 | 0.014 0.032
C1355 0.121 0.024 | 0.011 0.015 0.025
c1908 0.129 0.024 | 0.017 | 0.031 0.023
Cc2670 0.158 0.044 | 0.035 | 0.046 0.040
C3540 0.248 0.086 | 0.032 | 0.038 0.043
C5315 0.226 0.106 | 0.039 | 0.049 0.027
C6288 5.569 0.648 | 0.151 0.154 0.775
C7552 0.872 0.157 | 0.071 0.111 0.108
51488 0.147 0.031 0.013 | 0.016 0.023
S38417 7.883 1.686 | 0.329 | 0.729 0.140
535932 13.692 | 5.130 | 0.868 1.856 0.373
538584 13.494 | 4804 | 0.923 1.840 0.310
S15850 11.380 | 4.320 | 0.864 1.792 0.328
average 3.640 1.141 | 0.225 | 0.448 0.153
ratio 1.000 0.313 | 0.062 | 0.123 0.042

B. Comparison with other state-of-the-art methods

In the second experiment, we compare our results with
state-of-the-art decomposers under one thread. All the decom-
posers are implemented and measured in OpenMPL such that
we can keep the preprocess procedure the same and compare
the results without potential bias due to different simplification
methods or stitch insertion techniques. TABLE IV lists the
decomposition cost of all decomposers. TABLE V lists all the
decomposition runtime excluding the time for graph simplifi-
cation and stitch insertion for better comparison. As expected,
there is no one existing decomposer which can dominate
others among existing decomposers. EC-based decomposer
outperforms others on runtime while causing some additional
costs. ILP-based decomposer obtains the optimal results while
the runtime is significantly worse than others. SDP-based
decomposer shows a runtime improvement compared with
ILP-based decomposer but cannot compete with EC-based
decomposer on both runtime and quality. Our framework [27]
obtains the optimal results in all cases no matter whether
we integrate the proposed non-stitch GNN decomposer. The
average runtime is reduced to 12.3% compared with ILP-
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Fig. 9 Runtime breakdown of our framework.

based decomposer because of the efficient graph matching
technique and EC-based decomposer which is selected as the
decomposer in most cases. Moreover, when we integrate the
GNN decomposer into our framework, the runtime can be
further reduced to 4.2% with the optimality still preserved.
The main reasons for the large improvement are 1) the
existence of considerable graphs that need not stitches, 2) the
efficiency of our proposed purely GNN decomposer under
GPU acceleration.

C. Runtime and algorithm selection analysis

In the third experiment, we analyze the runtime and the
algorithm selection results in our framework. The decom-
position runtime of our framework is mainly composed of
five parts: decomposition runtime by our GNN decomposer,
decomposition runtime by ILP-based decomposer, decompo-
sition runtime by EC-based decomposer, algorithm selection
time, and the runtime for the stitch redundancy prediction.
The runtime for graph matching and graph embedding are
counted in the decomposer selection since the 2-class classi-
fier is integrated into the graph embedding network for fast
inference. Fig. 9 shows the result, where the metric is the
total decomposition runtime of 15 layouts as before. From the



TABLE VI F1 score of stitch redundancy prediction. The results include (a) all instances (b) instances whose prediction
confidence are above the bar. “Redun.” and “Not Redun.” represent whether the stitch candidates in a graph are all redundant

or not.
(a) (b
Label Label
Redun.  Not Redun. Redun.  Not Redun.
Pred Redun. 5962 46 Pred Redun. 5730 0
* Not Redun. 55 498 * Not Redun. 2 185
Recall 99.23% Recall 100.0%
Fl-score 0.9916 Fl-score 0.9998
TABLE VII Layout statistics and results by GNN decomposer
Circuit |G| Insc-G|  |ns-G|  |pred. ns-G| | ILP cost GNN cost | ILP time GNN time

C432 4 0 0 0 0 0 0 0.0135
C499 4 0 4 1 0 0 0.0041 0.0134
880 8 0 1 0 0 0 0 0.0135
C1355 6 0 3 2 0 0 0.0045 0.0136
C1908 3 0 2 0 0 0 0 0.0135
C2670 0 3 0 0 0 0 0.0136
C3540 14 0 6 0 0 0 0 0.0140
C5315 16 0 7 2 0 0 0.0619 0.0135
C6288 200 0 25 17 0 0 0.0051 0.0143
C7552 39 1 16 3 0 0 0.0045 0.0135
51488 8 0 6 6 0 0 0.0339 0.0135
S38417 670 3 613 584 16 16 2.8480 0.0169
535932 2010 12 1958 1869 22 22 8.6960 0.0164
538584 1936 3 1817 1735 22 22 8.1550 0.0171
515850 1657 4 1556 1510 22 22 6.8680 0.0153
average 440.27 1.533 401.13 381.93 5.467 5.467 1.778 0.0152
ratio 1.000 0.003 0.911 0.867 1.000 1.000 1.000 0.008

For each graph, our adaptive framework tries to select the

1.94% most suitable decomposition algorithm. Here, we compare

2.07% the ratio of graphs assigned to different decomposers. The

result is shown in Fig. 10, more than 86.11% graphs are

— predicted as graphs with stitch redundancy, and therefore

o ILP decomposed by our non-stitch GNN decomposer. Although

W Graph matching
O GNN decomposer

Fig. 10 Decomposer usage breakdown, i.e., the percentage of
decompositions by using ILP/DL/ColorG N N/Matching.

figure, we can clearly see that the decomposition runtime by
the selected decomposer (ILP and DL) is the major bottleneck
and occupies 84.31% of the total runtime. The result indicates
that the runtime of GNN-related operations in our framework
is trivial, meaning that our method has strong scalability and
can be applied to select other more efficient decomposers in
the future. The inference runtime of algorithm selection and
redundancy prediction is very close because both of them use
RGCN as the backbone with the same parameters.

ILP only decomposes 2.07% graphs, it still occupies most
of the decomposition time of our framework due to its low-
efficiency.

D. Effectiveness of Redundant Stitch Prediction

In the fourth section, we demonstrate the effectiveness
of our GNN-based stitch redundancy predictor empirically.
The results are presented in TABLE VI in the form of a
confusion matrix. TABLE VI (a) counts all instances, and
(b) only counts instances whose prediction score is larger
than 0.99 are selected. According to the results, our GNN-
based predictor successfully predicts most redundancy, which
largely improves the efficiency after eliminating these redun-
dancies. More importantly, benefit from the bar constraint,
the prediction avoids any false prediction that predicts a non-
redundant graph as redundant. A more detailed result for each
circuit is shown in TABLE VII, where |pred. ns-G| is the
number of successful predictions among all instances.



E. Effectiveness of Non-Stitch GNN Decomposer

In the final experiment, we separately study the effec-
tiveness of our proposed GNN-based decomposer which is
specifically for non-stitch graphs. The results are shown in
TABLE VII, where G is the graph set after simplification
and stitch insertion. nsc-G (no stitch candidate graph) is a
subset of G in which graphs do not contain stitch edges. ns-
G (non-stitch graph) is a subset of § in which the optimal
decomposition results contain no stitches. pred. ns-G (pre-
dicted non-stitch graph) is a subset of G in which our proposed
stitch redundancy predictor predicts that these graphs do not
need stitch edges. ILP(GNN) cost represents the total cost
decomposed by ILP method (Our proposed GNN decomposer)
for graphs in pred. ns-G, ILP time is the total decomposition
time by ILP method for graphs in pred. ns-G. GNN time is
the total execution time by our GNN decomposer. Since we
implement the decomposer in a batch-process manner, we use
the GNN decomposer to decompose all graphs even before
the stitch redundancy prediction rather than waiting for the
prediction result of each case (note that the additional runtime
is trivial for the fast inference). Therefore, in some layouts,
such as C432, our GNN decomposer still decomposes some
graphs though there is no redundant graphs according to the
prediction, i.e., |pred. ns-G| = 0.

According to TABLE VII, we can observe some statistical
properties in the layout dataset. First, the existing stitch can-
didate generation algorithm will insert stitch candidates into
most graphs. Among over 6,000 graphs, only 23 graphs are
free of stitch edges. However, we observe that most of these
inserted stitch edges are not useful: in the final optimal results,
91.1% graphs contain no stitches, meaning that considerable
generated stitch candidates are redundant. Our predictor can
predict redundancy with high accuracy (381.93 over 401.13).
Then, for graphs whose stitch edges are predicted as redun-
dant, we can employ our GNN based decomposer, which is
specifically for the homogeneous graphs, i.e., graphs only
containing conflict edges. As shown in the table, our GNN
decomposer achieves the same result quality with the optimal
ILP solver, with a large improvement in the efficiency (reduce
to 0.8%). Although our GNN decomposer does not guarantee
an optimal result for any layout graph due to the inserted
randomness like random node attributes and random neighbor
sampling, we experimentally show that our GNN decomposer
achieves “optimal” results in the ISCAS benchmark. These
results demonstrate that our GNN-based decomposer can be
a practical option for the non-stitch decomposition problem.

VI. CONCLUSION

In this paper, we use RGCNs to obtain graph embeddings,
which are used to build the isomorphism-free graph library,
match graphs in the library, adaptively select decomposer, and
predict the stitch redundancy. We also propose a pure GNN-
based decomposer, which is applicable for non-stitch graphs.
The results show that the obtained graph embeddings have
powerful representation capability and demonstrate an excel-
lent balance between decomposition quality and efficiency.

Also, our GNN-based decomposer achieves an optimal results
for non-stitch cases in the experimental benchmark with a
huge runtime improvement.
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