
Characterize the ability of GNNs
in attacking logic locking

Wei Li∗, Ruben Purdy∗, José M. F. Moura∗, R.D. Blanton∗
∗Electrical and Computer Engineering Department

Carnegie Mellon University, Pittsburgh, United States

Abstract—Recent research has showcased the capability of
Graph Neural Networks (GNNs) to uncover the correct keys
from locked circuits without an oracle. However, a comprehen-
sive comprehension and discourse regarding their achievements
remain limited. For instance, which specific GNN architectures
possess a greater potency in effectively uncovering these keys? In
this paper, we model their ability to identify circuit changes that
stem from a logic lock as the ability to decide the isomorphism
between logic netlists. We examine different netlist graph repre-
sentations and characteristics of GNNs that improve the ability
in graph isomorphism. We show that GNNs are always upper
bounded by heterogeneous Weisfeiler Lehman test for netlist
isomorphism determination, and give the conditions when GNNs
reach the bound. Motivated by these conditions, a specific GNN
architecture, NetlistGNN, is proposed. Experimental results align
with our theorems, and demonstrate that GNN-based state-of-
the-art attacking models can benefit from our findings by simply
replacing the original GNN model to NetlistGNN.

Index Terms—Logic locking, Oracle-less attacks, Graph neural
networks

I. INTRODUCTION

The significant expense of integrated circuit (IC) manufactur-
ing has driven most design companies to outsource fabrication
to third-party foundries. This decades-long shift has introduced
a number of threats to IC security. For example, a nefarious
third party could engage in malicious circuit alteration, over-
production, or IP theft.

In response to these concerns, a number of design protection
techniques have been developed for protecting logic circuits,
the ”secret sauce” for most ICs. Among these, logic locking
has garnered a remarkable level of interest as a method to pre-
vent untrusted third parties from gaining a functional version
of an IC through overproduction or reverse engineering. There
has been a great deal of work in the area of logic locking
such as [1], [2], [3], [4], [5], [6], [7], [8], and many more.
Logic locking modifies a logic circuit so that it only operates
correctly when it is programmed with secret keys. Thus, a
third party without the knowledge of the correct keys would
only access the inoperable circuit.

However, many logic locking techniques are vulnerable to
attacks that allow untrusted parties to uncover the correct keys.
Many attacks also require the use of an oracle, which is a
properly programmed version of the circuit in which the keys
are stored in a tamper proof memory. Although an attack
cannot directly read out the keys from the oracle, they can
be uncovered using the input/output behavior of the oracle

along with simulation or analysis of the locked logic netlist.
Recent work has shown that Graph Neural Networks

(GNNs) are able to uncover the correct keys from locked cir-
cuits through analysis of the locked logic netlist alone [6], [8],
[7]. Thus, these attacks can be applied even in situations where
an adversary is unable to acquire an oracle. Additionally, these
attacks can uncover keys from circuits locked with locks that
are resistant to traditional oracle-based attacks. The intuition
behind the success of GNNs in attacking a locked circuit lies
in the fact that the logic netlist exhibits repeated sub-circuits,
and GNNs are well-equipped at learning the local structure
of the circuit, meaning that GNNs can capture those repeated
sub-circuits, and distinguish between sub-circuits that have and
have not been altered by a given lock. However, despite the
notable success of GNNs in revealing the correct key, there
is limited understanding and discussion regarding the “why”
of their success, e.g., what types of GNN architectures are
more powerful in the attacking problem? In this paper, we
examine the characteristics of GNNs that lead to their ability
to identify circuit changes stemming from a logic lock. Our
framework is inspired by previous works [9] that demonstrate
the capability of GNNs in determining graph isomorphism
being upper bounded by the Weisfeiler-Lehman (WL) test.
We introduce three graph representations of a logic netlist,
namely, undirected, directed, and heterogeneous. We explore
the relationship between GNNs and the WL test on the three
representations. The contributions are as follows:

• We show that GNNs are at most as powerful as the WL
test in distinguishing logic netlists under all three graph
representations.

• We establish conditions on the GNNs and graph repre-
sentations to make the GNN as powerful as the WL test
or its variations.

• Using these conditions, NetlistGNN, a specific GNN
architecture that is maximally powerful is proposed.

• Experiments align with our theoretical analysis and
demonstrate that state-of-the-art attacking methods bene-
fit from NetlistGNN in most cases.

II. PRELIMINARY

Graph representation of a logic netlist. In this paper, we
focus on the gate-level logic netlist, which is composed of
various gates, and interconnects. A netlist can be also modeled
as a graph, where each gate is a node, and the interconnect
form the edges. Differentiated by the graph type, there are
three possible netlist graph representations: undirected, di-979-8-3503-0955-3/23/$31.00 ©2023 IEEE

(a) (b) (c)

Input Output

(d)
Fig. 1: (a) An example netlist with corresponding (b) undi-
rected, (c) directed, and (d) heterogeneous graph models.

A

B

D
C

F

E

Target node

V

V

A

B

D
C

F

E

Target node

V

V

A

B

D
C

F

E
V

A

B

D
C

F

E
V

Aggregation Combination

Fig. 2: An undirected GNN layer with two steps: aggregation
and combination.

rected, and heterogeneous.1 Examples of three netlist graph
representations are shown in Figure 1.
Graph Neural Networks. Graph Neural Networks (GNNs)
learn the node embeddings or graph embedding given a graph
G = (V, E) and node attributes {h0

v : v ∈ V}, where an
embedding is a low-dimensional vector that contains infor-
mation about the original object. Most GNNs are composed
of a sequence of layers where each node aggregates features
from its neighbors and combines the aggregated information.
Figure 2 shows how a GNN layer works for an undirected
graph. Let A be a general GNN for undirected graphs, at each
layer i, A computes the node feature h(i)

v for every node v ∈ V
by:

h(i)
v = COM(i)

(
h(i−1)
v ,AGG(i)

({
h(i−1)
u : u ∈ N (v)

}))
,

(1)

where N (v) denotes the neighborhood of v, i.e., N (v) =
{u : {u, v} ∈ E}, and AGG(i) (COM(i)) is the aggregation
(combination) function of a GNN A at ith layer. The output of
the layer sequence, h(L)

v , is the node embedding of v generated
by A. To obtain the graph embedding hG , a readout function
READ(·) is applied to the node embeddings:

hG = READ
({

h(L)
v : v ∈ V

})
(2)

Directed GNNs. When the graph is directed, one possible vari-
ation is to aggregate features from successors and predecessors
separately. Formally, the input of the aggregation function is:({

h(i−1)
s : s ∈ S(v)

}
,
{
h(i−1)
p : p ∈ P(v)

})
(3)

where S(v) and P(v) are the successors and predecessors of
v, respectively.
Heterogeneous GNNs. For heterogeneous graphs, the aggrega-
tion is applied to different metapaths, where a metapath in the
netlist graph is defined as a combination of two node types and

1Formal definitions can be found at the appendix:
https://anonymous.4open.science/r/NetlistGNN/proof.pdf

one edge type. Formally, the input of the aggregation function
is: ({

h(i−1)
u : u ∈ Nm(v)

}
: m ∈ metapaths

)
(4)

Here, Nm(v) is the set of neighbors of v that connects v by
a specific meta-path m = i-e-j, i.e., Nm(v) = {u : {u, v} ∈
Ee, type(u) = i, type(v) = j}.
Directed WL test. Similar to directed GNNs, the WL test is
easily extended to a directed graph by aggregating successors
and predecessors separately. That is,

c′(t)v = g
(
c′(t−1)
v ,

{{
c′(t−1)
s : s ∈ Sv

}}
,
{{

c′(t−1)
p : p ∈ Pv

}})
(5)

Heterogeneous WL test. The WL test is also extended to the
heterogeneous cases where different metapaths give different
multi-sets:

cH(t)
v = g

(
cH(t−1)
v ,

({{
cH(t−1)
u : u ∈ Nm(v)

}}
: m ∈ metapaths

))
Logic locking. Formally, a logic-locking technique transforms
a circuit C : {0, 1}n → {0, 1}m into a locked circuit
L : {0, 1}n × {0, 1}k → {0, 1}m locked with a key
K : {0, 1}k. Applying the correct key to the locked circuit
restores the functionality of the original circuit, such that
L(K,X) = C(X) for any input X : {0, 1}n. With an incorrect
key applied, the locked circuit may disagree with the original
circuit, preventing the use of the locked circuit by unauthorized
parties. The first proposed logic locking technique, referred to
as Random Logic Locking (RLL) [1], inserts parity gates at
random nets in the circuit. The other inputs to the gates are
driven by the key inputs so that an incorrect key value will
invert the value of the net. LUT lock [2] replaces gates in the
circuit with lookup tables, specifically targeting gates along
paths that which are difficult to attack using SAT. Besides
RLL and LUT-based locking methods, MUX-based methods,
which add incorrect paths to the circuit which must be ignored
by correctly setting MUX select lines, [4], [5] have also been
widely studied.
Attack model. Attack is to predict the correct key value
given a locked netlist. Figure 4 shows the general workflow
of GNN-based attacks. Given a locked netlist, the first step
is to construct the corresponding graph representation, and
the target key prediction problem is formulated as either a
node classification or edge prediction problem and predicted
by GNN. Simple examples of different locking methods and
corresponding graph representations are shown in Figure 3.
The attack for the parity gate-based and LUT-based locking
can be directly translated into a node classification problem,
where the white node is the node to be classified. For the
parity gate-based locking, the white node is the key node and
the label is the key value, i.e., 0 or 1. For the LUT-based
locking, the white node denotes the LUT node and the label
is the type of the original gate replaced by the LUT module.
To attack the MUX-based locking, the problem is naturally
an edge prediction problem, where orange edges are to be
predicted, i.e., which one exists in the original circuit. Alrahis
[6], [7] models the edge prediction as a graph classification
problem by extracting the sub-graphs surrounding the target
edges, and use the graph embedding to predict the edges.

(a) (b)

LUT

(c) (d) (e) (f)
Fig. 3: Given the original logic netlist as in Figure 1a, the logic netlist is locked by (a) parity gate-based (c) LUT-based, and
(e) MUX-based logic locking. The right graphs are their corresponding graph representations.

Logic locking

Original netlist

Locked netlist Graph representation

Input

Attack using GNNs

GNN

Key = 1? Key = 0?

Prediction

:Key input

Fig. 4: The general workflow of GNN-based attacks.
Algorithm 1 AttackTRLL

Require: N → the locked netlist by TRLL [3];
Require: f → A perfect graph discriminator;

1: L ← extract all subgraphs from N ;
2: for each key input k in N do
3: Gk ← extract the subgraph of N rooted from the input node

corresponding to k;
4: for each subgraph Gl in L do
5: Determine the discrepancy between Gk and Gl by

f(Gk,Gl);
6: if the discrepancy is case S1a or case S2a then
7: vote k = 1; ▷ S1a and S2a are from [3]
8: else if the discrepancy is is case S1b or case S2b then
9: vote k = 0; ▷ S1b and S2b are from [3]

10: end if
11: end for
12: Determine k by majority vote;
13: end for

Because GNN-based attacks only rely on structural infor-
mation from the locked circuit, they do not require attackers to
obtain an oracle. Thus, they are applicable even in situations
where attackers are unable to purchase an unlocked version of
the circuit from the market. This is an advantage over SAT-
or ATPG-based attacks.

III. THEORETICAL FRAMEWORK

In this section, we analyze when and how GNNs are able to
uncover more keys from a locked circuit.

Random Netlist Regular half-subtractor
GCN [10] 0.5629 1.0000
GraphSAGE [11] 0.6214 0.9982

TABLE I: The key prediction accuracy of GCN and Graph-
SAGE on attacking Random Logic Locking (RLL). The ran-
dom netlist is generated using circuitgraph [12]. For regular
circuits, half-subtractors with different bits are generated.

Our intuition comes from the motivating example shown in
Table I: GNN-based attack methods can easily uncover keys
from half-subtractor, which is a regular circuit, i.e., circuit
with many regular and repeated moudules. However, given a
randomly generated circuit, GNN-based method fails to attack
it. This hints that the regular structure of the circuit is the key
to the success of GNN-based attack: Given a locked circuit
without an oracle, the only visible information for the attacker
is the structure of the locked circuit. At the same time, since
the number of locked keys is limited, there is still a significant
portion of sub-circuits that are not altered by keys. As long as
there exists similarity between locked part and unaltered part,
a learning algorithm can learn the structure information from
the unaltered sub-circuits, and then use the learned structure
information to distinguish the altered sub-circuits from the
unaltered ones, thereby uncovering the keys.

The ability to learn graph structure is highly related to the
ability to distinguish graphs. If the netlist graph is composed
of many repeated sub-graphs, and there is a “perfect” dis-
criminator that can distinguish any two graphs and locate
the difference, then the discriminator can learn any trivial
difference between graphs, thereby being more capable of
“guessing” the key value by comparing the difference caused
by the key insertion. Assume we have a “perfect” discrimi-
nator, Algorithm 1 is a theoretical algorithm to attack Truly
Random Logic Locking (TRLL) [3], which claims to be
learning-resistent. The key idea is to extract all sub-circuits
from the locked circuit, and compare the with-key sub-circuit
with the without-key sub-circuit. The key value is determined
by the discrepancy found by the discriminator.

Inspired by this intuition, we characterize the power of
GNNs in attacking as its ability to distinguish logic netlists.
Formally, we define the statement “B is at least as powerful
as A” as follows:

Definition 1 (A ⪯ B). Assume GNNs and WL test have
the same node attributes and initial node labels if the input
graphs are from the same logic netlist. Given two logic netlists
N1,N2, let the input of A(B) be one of the three netlist
graph representations, and defined as GA

1 ,GA
2 (GB

1 ,GB
2). We

say that B is at least as powerful as A (A ⪯ B) if and only
if the following statement holds: If A decides GA

1 and GA
2

are not isomorphic, then B also decides GB
1 and GB

2 are not
isomorphic. 2

Specifically, we say A = B if and only if A ⪯ B and
B ⪯ A; A ≺ B if and only if A ⪯ B holds but B ⪯ A
does not hold. In the following section, we will construct the

2Preliminary of WL test and all proofs can be found at the appendix.

relationships among different GNNs and WL test variations
based on the definition above.
A. Undirected vs. Directed vs. Heterogeneous
Undirected [13], [6], [8], [7] and directed [14], [15] graphs
were both used to represent the logic netlists. To the best
of our knowledge, the heterogeneous netlist graph was never
discussed, let alone the comparison with the three representa-
tions. In this section, we study the influence of the three graph
representations, that is, under which representations are GNNs
and WL test the most powerful?

We first discuss the power of WL test and its variations
under different graph representations. The following lemma
suggests that the directed WL test is at least as powerful as
the original undirected WL test in distinguishing the netlist
graph.

Lemma 1. Undirected WL ≺ directed WL

Besides undirected and directed WL test on the netlist
graphs, we can also derive the relationship between the di-
rected WL test and heterogeneous WL test:

Lemma 2. Directed WL ⪯ heterogeneous WL

Unlike the comparison between directed and undirected WL
test, it is possible for directed WL test to be as powerful as
the heterogeneous WL test. The conditions are specified as
follows:

Lemma 3. Directed WL = heterogeneous WL when nodes
with different gate types are assigned different initial node
labels.

We already show that the heterogeneous WL test is the
most powerful among three WL test variations. The inequality
relationships also hold in GNNs: It is easy to see that heteroge-
neous GNNs are at least as powerful as other GNN variations,
since the heterogeneous GNNs can always reduce to directed
GNNs and normal GNNs. Formally, we have:

Lemma 4. Undirected GNNs ≺ directed GNNs

Lemma 5. Directed GNNs ⪯ heterogeneous GNN

B. GNNs versus WL test
Xu [9] demonstrates that the power of GNNs is bounded by
WL test in determining the isomorphism of undirected graphs.
However, as shown in previous lemmas, both GNNs and WL
test are not as powerful as their directed and heterogeneous
versions in determining the isomorphism of netlists. Here,
we compare GNNs and WL test by directly comparing their
maximally powerful version: the heterogeneous GNNs and
heterogeneous WL test:

Lemma 6. Heterogeneous GNNs ⪯ heterogeneous WL test

Although GNNs are upper bounded by heterogeneous WL
test, they are still possible to reach the bound, i.e., be equally
powerful as the heterogeneous WL test:

Theorem 1. Let A be a GNN with a sufficient number of GNN
layers. A = heterogeneous WL test if the following conditions
hold:

B: B is as least as powerful as A ()

Undirected WL test Directed WL test

Undirected GNNs Directed GNNs

A B: B is more powerful than A ()

Xu [9]

Lemma 4

Lemma 1
Lemma 7

Heterogeneous GNNs

Heterogeneous WL test

A B
A A B

Lemma 5

Lemma 6
Lemma 2

Fig. 5: The power relations of GNNs and WL tests in determin-
ing the logic netlist isomorphism. Different colors represent
different graph representations.

A

B

D
C

F

E

Target node

V

V

({A,B,C})

({D,E,F})

Directed

A

B

D
C

F

E

Target node

V

V ({A,C})
({B})
({F})
({E})
({D})

…

Heterogenous

weighted
sum

Fig. 6: The visualization of directed NetlistGNN and hetero-
geneous NetlistGNN, h′

v is the new node embedding of v.

• the aggregation and combination functions of A are
injective.

• the readout function of A is injective.
• At least one of the two conditions holds: 1) A sepa-

rately aggregates features from different meta-paths. 2)
A separately aggregates features from the successors and
predecessors, and nodes with different gate types are
assigned different initial node attributes.

The summary of all relationships are given in Figure 5.
Based on Theorem 1, a guidance for building powerful GNNs
can be naturally provided. However, the theoretical upper
bound is hard to reach since injectivity cannot be guaranteed,
and the requirement of layers being sufficiently deep is not
feasible in practice. Moreover, injective functions are not
unique, meaning that significant efforts are still needed to
determine which GNN setting is better. In the appendix, we
discuss these problems and propose corresponding concrete
solutions.

IV. METHOD

In this section, we describe how our findings on GNNs are
applied to attack the logic lock. We first propose our GNN ar-
chitecture: NetlistGNN. Then, we introduce how NetlistGNN
is used in the attacking flow.

A. NetlistGNN

Based on Theorem 1, both directed GNNs and heterogeneous
GNNs can reach the limit bounded by heterogeneous WL
test. Correspondingly, we propose two variations. A figure
illustration of the two variations are shown in Figure 6.
In NetlistGNN, successors and predecessors are aggregated
separately (Theorem 1). The layer of the directed NetlistGNN

TABLE II: Attacking results of UNTANGLE[7] and UNTAN-
GLE+ (replacing original DGCNN by directed NetlistGNN)
on random MUX-based lock. K is the number of testing keys;
✓ (×) is the number of keys that are predicted correctly (not
correctly); ? is the number of keys that cannot be decided in
the postprocess.

Benchmark K UNTANGLE UNTANGLE+
✓ × ? ✓ × ?

c7552
64 62 0 2 64 0 0

128 115 2 9 124 1 1
256 224 3 19 243 2 1

c5315
64 58 0 5 60 1 2

128 112 3 7 116 6 0
256 203 16 19 229 6 3

c3540
64 56 6 2 62 2 0

128 109 6 12 120 4 3
256 230 18 5 237 13 3

c2670
64 55 6 3 58 4 2

128 113 4 11 108 9 11
256 213 12 31 223 13 20

b22 512 485 8 19 499 7 6
b21 512 482 14 15 500 4 7
b20 512 485 14 13 506 4 2
b14 512 478 21 13 505 5 2

TABLE III: Attacking results of MuxLink[6] and MuxLink+
(replacing original DGCNN by directed NetlistGNN) on D-
MUX lock [4]. Columns follow the same definitions in Ta-
ble II. Time is the training time.

Benchmark K MuxLink MuxLink+
✓ × ? time (s) ✓ × ? time (s)

c7552 256 246 10 0 98 245 9 2 121
c6288 256 255 0 1 86 256 0 0 116
c5315 256 244 8 4 88 243 12 1 114
c3540 256 224 30 2 78 224 31 1 90
c2670 256 223 31 2 50 225 29 2 62
b22 512 492 13 7 1423 494 11 7 1812
b21 512 496 4 12 912 497 6 9 1056
b20 512 488 19 5 880 486 16 10 1031
b14 512 486 24 2 162 490 19 3 198

is formalized as:

h(t)
v = Θ1h

(t−1)
v +

∑
j∈S(i)

ϵsi,jΘsh
(t−1)
j +

∑
j∈P(i)

ϵpi,jΘph
(t−1)
j

(6)

where Θi is the trainable weight, and the ϵpi,j(ϵ
s
i,j) is the

attention coefficient using the same calculation method in [16].
Similarly, for the heterogeneous NetlistGNN , the layer is

formalized as:

h(t)
v = Θ1h

(t−1)
v +

∑
m∈metapaths

∑
j∈Nm(i)

Θmh
(t−1)
j

|Nm(i)|
(7)

In the heterogeneous version, we do not use attention for better
generalization: attention makes the model easy to be overfit-
ting, especially when there are |nodetypes|×2×|nodetypes|
metapaths.
B. Workflow for attacking logic lock
For attacking different logic lock methods, GNNs are used
in different ways. In this paper, we focus on the GNN
architecture, therefore, we only cover a basic and general
workflow here (shown in Figure 4). It is recommended to read
[17] for details about applying GNNs on various logic lock.
Given a locked logic netlist, it is translated into a netlist graph
representation. Then, we insert keys to the logic netlist using
the same logic lock technique, these newly inserted keys are
for training and validation. Depending on the logic lock types,
the corresponding attacks can be translated into either node
classification or graph classification. Details can be found in
Section II.

V. RESULTS

In the experiments, we try to verify our theoretical findings.
Therefore, we mainly consider two questions:

• RQ1: Can previous GNN-based attacking methods di-
rectly benefit from our theoretical findings by simply
replacing the original GNN model to NetlistGNN?

• RQ2: Do our statements hold in practice, even under
various scenarios, like synthesis and corruptibility?

Different models are assigned different hidden dimension to
make the model complexity comparable: directed NetlistGNN
is 32, and heterogeneous NetlistGNN is 16, while DGCNN,
GraphSAGE, and our undirected variant are 64. We perform
the experiments on a Tesla V100 GPU. ISCAS-85, ITC-99
datasets,and Common Evaluation Platform (CEP) datasets are
used in our experiments.

A. RQ1

In RQ1, we keep all the same with the previous attacking
methods, except that the GNN model is replaced to directed
NetlistGNN with the same complexity and model depth.

Comparison with UNTANGLE[7]. The results are shown
in Table II. Generally, after using NetlistGNN, UNTANGLE+
reduces the false predicted number by 40% for the small
ISCAS-85 dataset, and 65% for the relatively large ITC-99
dataset. Comparison with MuxLink[6]. To integrate Netlist-
GNN into MuxLink, we preserve the sortpooling used in
MuxLink and replace the GCN layers by directed NetlistGNN
layer (Equation (6)). The results are shown in Table III.
Enhanced with NetlistGNN, MuxLink+ is able to reduce the
faulty prediction by 15% on large ITC-99 dataset, with a
slight runtime increase.

B. RQ2

For RQ2, we train the model for 1000 epochs, and use the
model with the best validation performance for testing. We
evaluate our theorems on two representative parity-gate based
methods: Truly Random Logic Lock (TRLL) [3] in Table IV
and Random Logic Lock (RLL) [1] in Figure 7 and Figure 8.
Both of them are implemented by circuitgraph library [12].
Node attributes are one-hot features representing gate function;
30% available locations are selected to insert new keys for
training, validation, and testing with ratio 3:1:1. The attacking
problem is treated as node classification, and node label is its
key value in parity-based methods. More experiments can be
found at the appendix.

Comparison with other GNN models. We compare graph-
SAGE [11] and GATv2 [16] with directed (Equation (6)) and
heterogeneous (Equation (7)) NetlistGNN. Our models are
much better than previously-used GNN model. Moreover, it is
observed that all GNNs perform better in the larger case, which
aligns with our intuition that GNNs are successful in attacking
because of its ability in capturing local structure since larger
case always provides more local structure information.

Undirected vs. Directed vs. Heterogeneous As shown in
Table IV, where “Ours w. undirected” is the undirected version
of our attention-based layer, i.e., the GATv2 model. When the
directed and heterogeneous graph representations are reduced
to the undirected graph, the accuracy drops a lot. The directed

TABLE IV: Prediction accuracy of GraphSAGE [11], GATv2 [16], and NetlistGNN on Truly Random Logic lock [3]
Dataset ISCAS85 CEP ITC99

Benchmark c5315 c7552 des3 sha256 FIR filter md5 IIR filter b14 b18 b19 b20 b21 b22
of nodes 3968 4302 13128 53385 16225 21766 26091 8022 114463 223111 20022 20411 29147

GraphSAGE 0.8311 0.8766 0.834 0.9793 0.992 0.9175 0.9692 0.8277 0.8871 0.8754 0.8655 0.8647 0.8659
Ours directed 0.8378 0.9481 0.9538 0.9948 0.994 0.9782 0.9835 0.8986 0.9687 0.9834 0.9556 0.9499 0.9577

Ours heterogeneous 0.9527 0.9675 0.9769 0.9868 1.0 0.9794 0.9956 0.8986 0.9627 0.9739 0.9417 0.9513 0.9622
Ours w. undirected (GATv2) 0.8649 0.8247 0.8803 0.9807 0.976 0.921 0.9714 0.8243 0.9217 0.9157 0.8308 0.866 0.9415

b13 b14 b15 b17 b18 b19 b20 b21 b22
data_name

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

50

100

150

200graphSAGE
NetlistGNN

Fig. 7: The GraphSAGE and NetlistGNN results on attacking
circuits locked by RLL after synthesis. The bars (left y-axis)
are test accuracy, and the lines (right y-axis) are training time
in seconds.

c432 c499 c880 c1355 c1908
0

0.1

0.2

0.5 graphSAGE
NetlistGNN
Random

(a)

c432 c499 c880 c1355 c1908
0

0.2

0.5

0.8

1

(b)
Fig. 8: (a) Corruptibility and (b) Accuracy on attacking RLL.
Random is the average result over ten independent random
key guesses.

NetlistGNN with gate function as node attribute achieves a
similar performance with heterogeneous NetlistGNN.

Impact of Synthesis In order to study the impact of
synthesis on the accuracy of the GNN attack, comparing
performance after synthesis is performed. We use Synopsys
DesignCompiler to synthesize to a generic library. The results
are presented in Figure 7. We observe that: 1) Synthesis is
an effective method to defend GNN attack. 2) NetlistGNN
always performs better than graphSAGE, with a few sacrifices
of training time.

Corruptibility Because the GNN attack does not guaran-
teed the correctness of keys, it is important to quantify how
much the generated key degrades security. Corruptibility is the
fraction of inputs for which the outputs of the locked circuit
and original circuit disagree when a particular key is applied
to the locked circuit. We measure bit-wise corruptibility,
meaning we calculate corruptibility for each output separately
and then average over all outputs. Figure 8 compares the
corruptibility of random keys with the corruptibility of keys
predicted by GNNs. Since corruptibility calculation is too
time-consuming, we only count circuits with number of gates
less than 1500. We can see that applying GNNs significantly
reduce the corruptibility, where NetlistGNN is still better than
graphSAGE. At the same time, the drop of corruptibility
is generally related with accuracy: higher accuracy usually
indicates lower corruptibility.

VI. CONCLUSION

In this paper, we developed a theoretical framework for rea-
soning about the ability of GNNs in identifying circuit changes
that stem from a logic lock. We also proved an ability upper
bound of GNNs and when GNNs reach the upper bound.

REFERENCES

[1] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” Design, Automation & Test in Europe, pp. 1069–
1074, 2008.

[2] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “LUT-
lock: A Novel LUT-Based Logic Obfuscation for FPGA-Bitstream and
ASIC-Hardware Protection,” IEEE Computer Society Annual Symposium
on VLSI, pp. 405–410, 2018.

[3] N. Limaye, E. Kalligeros, N. Karousos, I. G. Karybali, and O. Sinanoglu,
“Thwarting all logic locking attacks: Dishonest oracle with truly random
logic locking,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 40, no. 9, pp. 1740–1753, 2020.

[4] D. Sisejkovic, F. Merchant, L. M. Reimann, and R. Leupers, “Deceptive
logic locking for hardware integrity protection against machine learning
attacks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2021.

[5] A. Alaql, M. M. Rahman, and S. Bhunia, “Scope: Synthesis-based
constant propagation attack on logic locking,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 29, no. 8, pp. 1529–
1542, 2021.

[6] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “Muxlink: Cir-
cumventing learning-resilient mux-locking using graph neural network-
based link prediction,” arXiv preprint arXiv:2112.07178, 2021.

[7] L. Alrahis, S. Patnaik, M. A. Hanif, M. Shafique, and O. Sinanoglu,
“Untangle: Unlocking routing and logic obfuscation using graph neu-
ral networks-based link prediction,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 2021, pp.
1–9.

[8] L. Alrahis, S. Patnaik, F. Khalid, M. A. Hanif, H. Saleh, M. Shafique,
and O. Sinanoglu, “Gnnunlock: Graph neural networks-based oracle-less
unlocking scheme for provably secure logic locking,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2021, pp. 780–785.

[9] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016.

[11] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2017, pp. 1024–1034.

[12] J. Sweeney, R. Purdy, R. D. Blanton, and L. Pileggi, “Circuitgraph: A
python package for boolean circuits,” Journal of Open Source Software,
vol. 5, no. 56, p. 2646, 2020.

[13] L. Alrahis, A. Sengupta, J. Knechtel, S. Patnaik, H. Saleh, B. Moham-
mad, M. Al-Qutayri, and O. Sinanoglu, “Gnn-re: Graph neural networks
for reverse engineering of gate-level logic netlists,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2021.

[14] Z. He, Z. Wang, C. Bail, H. Yang, and B. Yu, “Graph learning-
based arithmetic block identification,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 2021, pp.
1–8.

[15] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
2022.

[16] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” arXiv preprint arXiv:2105.14491, 2021.

[17] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “Embrac-
ing graph neural networks for hardware security,” arXiv preprint
arXiv:2208.08554, 2022.

