
Appendix: Characterize the ability of GNNs
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Fig. 1: (a) An example netlist with corresponding (b) undi-
rected, (c) directed, and (d) heterogeneous graph models.

I. PRELIMINARY

Graph representation of a logic netlist. In this paper, we
focus on the gate-level logic netlist, which is composed of
various gates, and interconnects. A netlist can be also modeled
as a graph, where each gate is a node, and the interconnect
form the edges. Differentiated by the graph type, there are
three possible netlist graph representations:

• Undirected netlist graph G = (V, E): each gate gv
corresponds to a node v ∈ V , and (u, v) ∈ E if and
only if gv is the driver or the load of gu.

• Directed netlist graph G′ = (V ′, E ′): each gate gv
corresponds to a node v ∈ V ′, and (u, v) ∈ E ′ if and
only if gv is the driver of gu.

• Heterogeneous netlist graph GH = (VH = ∪Vi : i ∈
gates types, EH ): each gate gv with type i corresponds
to a node v ∈ Vi, and (u, v) ∈ EH if and only if gv is
the driver of gu.

Especially, netlist inputs and outputs are also represented as
nodes with types “input” and “output.” Examples of three
netlist graph representations are shown in Figure 1.
Weisfeiler-Lehman test. Weisfeiler-Lehman (WL) test [12]
is a classical algorithm to determine whether two graphs are
isomorphic, i.e., there exists a bijection π : V → V ′ between
G1 and G2 such that u, v ∈ V are adjacent in G1 if and only if
π(u), π(v) ∈ V ′ are adjacent in G2. 1 The 1-dimensional WL
test is analogous to the iterative message-passing paradigm in
GNNs, at each iteration, each node aggregates the labels from
its neighborhoods, and then hashes the aggregated labels and
its own label into a unique new label. The algorithm decides
that two graphs are not isomorphic if the node labels between
the two graphs differ at some iteration. Formally, each iteration
t is defined as:

c(t)v = g
(
c(t−1)
v ,

{{
c(t−1)
u : u ∈ Nv

}})
, (1)

1The isomorphism of logic netlists are defined as mappings between gates
rather than nodes.

where g denotes an injective hashing function, and {{...}}
represents a multiset, that is, a generalization of a set that
allows repeated elements. Unless otherwise stated, the undi-
rected WL test in the following context refers to the 1-
dimensional WL test for undirected graphs. Similar to directed
and heterogeneous GNNs, WL test can be extended to directed
and heterogeneous case
Directed WL test. Similar to directed GNNs, the WL test is
easily extended to a directed graph by aggregating successors
and predecessors separately. That is,

c′(t)v = g
(
c′(t−1)
v ,

{{
c′(t−1)
s : s ∈ Sv

}}
,
{{

c′(t−1)
p : p ∈ Pv

}})
,

(2)
Heterogeneous WL test. The WL test is also extended to the
heterogeneous cases where different metapaths give different
multi-sets:

cH(t)
v = g

(
cH(t−1)
v ,

({{
cH(t−1)
u : u ∈ Nm(v)

}}
: m ∈ metapaths

))
,

(3)

II. THEORETICAL FRAMEWORK

Definition 1 (A ⪯ B). Assume GNNs and WL test have
the same node attributes and initial node labels if the input
graphs are from the same logic netlist. Given two logic netlists
N1,N2, let the input of A(B) be one of the three netlist
graph representations, and defined as GA

1 ,GA
2 (GB

1 ,GB
2 ). We

say that B is at least as powerful as A (A ⪯ B) if and only
if the following statement holds: If A decides GA

1 and GA
2

are not isomorphic, then B also decides GB
1 and GB

2 are not
isomorphic.

Specifically, we say A = B if and only if A ⪯ B and
B ⪯ A, A ≺ B if and only if A ⪯ B holds but B ⪯ A
does not hold. In the following section, we will construct the
relationships among different GNNs and WL test variations
based on the definition above.

A. Undirected vs. Directed vs. Heterogeneous
Lemma 1. Undirected WL ≺ directed WL

Proof. Define ϕ : V1 ∪ V2 → V ′
1 ∪ V ′

2 as the mapping from
nodes of the undirected graph G = G1 ∪ G2 to the nodes of
the corresponding directed graph G′ = G′

1 ∪ G′
2. We further

define πt : V1 ∪ V ′
1 → V2 ∪ V ′

2 as the isomorphism between
Ḡ1 = G1 ∪ G′

1 and Ḡ2 = G2 ∪ G′
2 calculated by WL test and

directed WL test after t iterations (if any). Here, ∪ between
two graphs represents a super-graph containing each graph as
an independent component.

Given any undirected graph and its corresponding directed
graph with similar mapping definition, ϕ∗, π∗, we first show
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Fig. 2: Given the original logic netlist as in Figure 1a, the logic netlist is locked by (a) parity gate-based (c) LUT-based, and
(e) MUX-based logic locking. The right graphs are their corresponding graph representations.

that if directed WL test labels two nodes u′, v′ the same
after t iterations, i.e., c′(t)v′ = c

′(t)
u′ , the WL test always labels

corresponding nodes u, v the same after t iterations, i.e.,
c
(t)
v = c

(t)
u , where u′ = ϕ∗(u) and v′ = ϕ∗(v). The statement

holds for t = 0 by definition. Suppose this holds for iteration i,
then, for i+1 iteration, if c′(i+1)

v′ = c
′(i+1)
u′ , then, by definition,

we have:(
c
′(i)
v′ ,

{{
c′(i)s : s ∈ Sv′

}}
,
{{

c′(i)p : p ∈ Pv′

}})
(4)

=
(
c
′(i)
u′ ,

{{
c′(i)s : s ∈ Su′

}}
,
{{

c′(i)p : p ∈ Pu′

}})
Let Nv′ be the neighborhood set of node v′, i.e., N ′

v′ = Sv′ ∪
Pv′ . Then, it must the case that:(
c
′(i)
v′ ,

{{
c′(i)n : n ∈ Nv′

}})
=
(
c
′(i)
u′ ,

{{
c′(i)n : n ∈ Nu′

}})
(5)

By the definition of the relationship between undirected
graph and its corresponding directed graph, we have Nv′ =
Nϕ∗(v) = ϕ∗ (Nv). Replace Nv′ and Nu′ in Eq 5 by ϕ∗ (Nv)
and ϕ∗ (Nu), we have:{{

c
′(i)
ϕ∗(n)

: n ∈ Nv

}}
=
{{

c
′(i)
ϕ∗(n)

: n ∈ Nu

}}
(6)

c
′(i)
v′ = c

′(i)
u′

Then, by our assumption on iteration i, we must have:(
c(i)v ,

{{
c(i)n : n ∈ Nv

}})
=
(
c(i)u ,

{{
c(i)n : n ∈ Nu

}})
(7)

Therefore, by induction, if directed WL test labels two nodes
u′, v′ the same, the WL test always labels corresponding nodes
u, v the same. This means that there always exists a mapping
σ such that c(i)v = m

(
c
′(i)
ϕ(v)

)
for any v ∈ G and i ∈ N.

Suppose after k iterations, the WL test decides G1 and G2

are not isomorphic, that is,{{
c(k)v : v ∈ G1

}}
̸=
{{

c
(k)
π(v) : π(v) ∈ G2

}}
∀π : Ḡ1 → Ḡ2

(8)

Combining with our previous proof that c(i)v = m
(
c
′(i)
ϕ(v)

)
, we

have:{{
c
′(k)
ϕ(v) : ϕ(v) ∈ G′

1

}}
̸=
{{

c
′(k)
ϕ(π(v)) : ϕ(π(v)) ∈ G′

2

}}
(9)

∀π : Ḡ1 → Ḡ2

which means that there is no isomorphism mapping between
G′
1 and G′

2. In other words, the directed WL test also decides
the non-isomorphism of G′

1 and G′
2, hence we reached a

contradiction, and showed that undirected WL ⪯ directed WL.
We then deny the possibility of them being equivalently

powerful: a simple example is given in Figure 3, where the
two different logic netlists give the same undirected graph
representation. In the example, the undirected WL test cannot
distinguish the logic netlists given the same undirected netlist
graph, but the directed WL test can distinguish them even after
only one iteration.

Besides undirected and directed WL test on the netlist
graphs, we can also derive the relationship between the di-
rected WL test and heterogeneous WL test:

Lemma 2. Directed WL ⪯ heterogeneous WL

Proof. We first derive that if heterogeneous WL test labels
two nodes uH , vH the same after t iterations, the directed WL
test always labels corresponding nodes u′, v′ the same after t
iterations. The key is that the multisets at each iteration in the
heterogeneous netlist graph can be reduced to the multisets of
the directed WL test: ∪Nm+(vH) : m+ ∈ {i−POS−type(v) :
i ∈ types of nodes} = ϕ(P (v′)) and ∪Nm−(vH) : m− ∈
{i − NEG − type(v) : i ∈ types of nodes} = ϕ(S(v′)) Then,
we can show that heterogeneous WL test always decides the
non-isomorphism of GH

1 and GH
2 as long as the directed WL

test decides the non-isomorphism of G′
1 and G′

2 since there
exists a mapping such that c′(i)v = m

(
c
H,(i)
ϕ(v)

)
.

Unlike the comparison between directed and undirected WL
test, it is possible for directed WL test to be as powerful as
the heterogeneous WL test. The conditions are specified as
follows:

Lemma 3. Directed WL = heterogeneous WL when nodes
with different gate types are assigned different initial node
labels.

Proof. We follow the definitions in lemma 1 with the “undi-
rected” term is replaced by “heterogeneous”. When different
gates have different initial node labels in the directed WL test,
it clearly holds that their node labels are always different after
any number of iterations of directed WL test.

We first show that if such a directed WL test labels two nodes
u′, v′ the same after t iteration, the heterogeneous WL test
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Fig. 3: (a) (b) Two different logic netlists; (c) corresponding undirected graph representation; (d) (e) corresponding directed
graph representations

will also label corresponding nodes uH , vH the same. The
statement holds for t = 0 by definition. Suppose this holds
for iteration i, then, for i + 1 iteration, if c

′(i+1)
v′ = c

′(i+1)
u′ ,

then, by definition, we have:(
c
′(i)
v′ ,

{{
c′(i)s : s ∈ Sv′

}}
,
{{

c′(i)p : p ∈ Pv′

}})
(10)

=
(
c
′(i)
u′ ,

{{
c′(i)s : s ∈ Su′

}}
,
{{

c′(i)p : p ∈ Pu′

}})
Since nodes with different gate types have different node
labels, that means: c′v′ ̸= c′u′ for all v′ ∈ V ′

1, u
′ ∈ V ′

2 if the
gates types of v′ and u′ are different. This gives the following:{{

c
′(i)
n : n ∈ Na−e(v

′)
}}

̸=
{{

c
′(i)
n : n ∈ Nb−e(u

′)
}}

: a ̸= b, e ∈ {POS,NEG} (11)

where Na−POS(v) (Na−NEG (v′)) represents the predeces-
sors (successors) of v with gate type a. Combing with Equa-
tion (10) and Equation (11), if c

′(i+1)
v′ = c

′(i+1)
u′ , we must

have:{{
c
′(i)
n : n ∈ Na−e(v

′)
}}

=
{{

c
′(i)
n : n ∈ Na−e(u

′)
}}

(12)
: e ∈ {POS,NEG}

Therefore, by induction, if directed WL test labels two nodes
u′, v′ the same, the heterogeneous WL test always labels
corresponding nodes uH , vH the same. This means that there
always exists a mapping σ such that cH(i)

vH = m
(
c
′(i)
v′

)
. We

can then show that the directed WL test always decides the
non-isomorphism of G′

1 and G′
2 as long as the heterogeneous

WL test decides the non-isomorphism of GH
1 and GH

2 .2

We already show that the heterogeneous WL test is the
most powerful among three WL test variations. The inequality
relationships also hold in GNNs: It is easy to see that heteroge-
neous GNNs are at least as powerful as other GNN variations,
since the heterogeneous GNNs can always reduce to directed
GNNs and normal GNNs. Formally, we have:

Lemma 4. Undirected GNNs ≺ directed GNNs

Lemma 5. Directed GNNs ⪯ heterogeneous GNN

Proof. We only show the proof of Lemma 4 due to the
page limit, the proof of Lemma 5 is similar. We fin-
ish the proof by showing that any undirected GNN can
be obtained by downgrading some directed GNN. Define

A =

{(
AGG(i),COM(i)

)L
i=1

,READ
}

maps G1 and G2

2The proof is similar to the proof in Lemma 1 and not shown here.

to different embeddings. Then a directed GNN A′ ={(
AGG′(i),COM′(i)

)L
i=1

,READ′
}

can be constructed by:

AGG′(i) (c,S,P) = AGG(i) (c, (S ∪ P)) ∀i ∈ {1, . . . , L}
(13)

COM′(i) (x,y) = COM(i) (x,y) ∀i ∈ {1, . . . , L} (14)

READ′ (X) = READ (X) (15)

Since G and G′ have the same initial node features, i.e.,
h0
v = h0

ϕ(v), and S ′
v∪P ′

v = Nv by definition, A and A′ always
generate the same node embeddings at each layer, thereby
always generating the same graph embedding. Therefore, we
show that undirected GNNs ⪯ directed GNNs. Moreover,
undirected GNNs cannot be as powerful as directed GNNs:
one of the examples is given in Figure 3, where the undirected
GNNs cannot distinguish the two logic netlists since the given
undirected graph representations are totally the same.

B. GNNs versus WL test
Xu [10] demonstrates that the power of GNNs is bounded by
WL test in determining the isomorphism of undirected graphs.
However, as shown in previous lemmas, both GNNs and WL
test are not as powerful as their directed and heterogeneous
versions in determining the isomorphism of netlists. Here,
we compare GNNs and WL test by directly comparing their
maximally powerful version: the heterogeneous GNNs and
heterogeneous WL test:

Lemma 6. Heterogeneous GNNs ⪯ heterogeneous WL test

Proof. We first show that if the heterogeneous WL test labels
two nodes the same after t iterations, i.e., c

(t)
v = c

(t)
u , then

heterogeneous GNNs will always generate the same node
features at tth iteration, i.e., h(t)

v = h
(t)
u . Suppose this holds

for iteration i, then, for i+1 iteration, if c(i+1)
v = c

(i+1)
u , then,

by definition, we have:(
c(i)v ,

{{
c(i)n : n ∈ Nm(v)

}}
: m ∈ metapaths

)
= (16)(

c(i)u ,
{{

c(i)n : n ∈ Nm(u)
}}

: m ∈ metapaths
)

Since c
(i)
v = c

(i)
u indicates h

(i)
v = h

(i)
u by our assumption on

iteration i, it must be the case that(
h(i)
v ,
{{

h(i)
n : n ∈ Nm(v)

}}
: m ∈ metapaths

)
= (17)(

h(i)
u ,
{{

h(i)
n : n ∈ Nm(u)

}}
: m ∈ metapaths

)
Therefore, by induction, if heterogeneous WL test labels

two nodes the same, the heterogeneous GNNs will always



generate the same node features. This means that there always
exists a mapping σ such that h(i)

v = m
(
c
(i)
v

)
. Then, for two

heterogeneous netlist graphs G1 and G2, if heterogeneous WL
test fails to determine the isomorphism of the two graphs,
i.e., {{cv : v ∈ V1}} = {{cv : v ∈ V2}}, the multisets of node
features must be the same:

{{hv : v ∈ V1}} = {{hv : v ∈ V2}} (18)

Because the readout function is permutation invariant, we have
A(G1) = A(G2), which is a contradiction.

Although GNNs are upper bounded by heterogeneous WL
test, they are still possible to reach the bound, i.e., be equally
powerful as the heterogeneous WL test:

Theorem 1. Let A be a GNN with a sufficient number of GNN
layers. A = heterogeneous WL test if the following conditions
hold:

• the aggregation and combination functions of A are
injective.

• the readout function of A is injective.
• At least one of the two conditions holds: 1) A sepa-

rately aggregates features from different meta-paths. 2)
A separately aggregates features from the successors and
predecessors, and nodes with different gate types are
assigned different initial node attributes.

The summary of all relationships are given in Figure 4.

Proof. We first consider the case where the first sub-condition
in the third condition holds: Let A be the GNN satisfying
the conditions above, h(i)

v be the node feature of v generated
by A at iteration i, and c

(i)
v be the node label of v assigned

by the heterogeneous GNN at iteration i. Assume that the
heterogeneous WL test decides two heterogeneous netlist
graphs G1,G2 as non-isomorphic after t iteration, but A still
fails to decide the isomorphism.

We first show that there always exists an injective function σ

such that h(i)
v = σ

(
c
(i)
u

)
for all i ∈ {1, ..., k}. The statement

holds for k = 0 since the node attributes and initial node
labels are the same. Suppose this holds for iteration i, that is,
h
(i)
v = σ

(
c
(i)
u

)
, then, h(i+1)

v will be:

h(i+1)
v = α

(
σ
(
c(i)v

)
, β
({

σ
(
c(i)u

)
: u ∈ Nm(v)

}
: m ∈ metapaths

))
,

(19)

where α, β are corresponding injective combination and ag-
gregation functions. Because the composition of injective
functions is also injective, the equation above can be further
represented by:

h(i+1)
v = ϵ

(
c(i)v ,

({
c(i)u : u ∈ Nm(v)

}
: m ∈ metapaths

))
,

(20)

where ϵ is an injective function. Then, we have:

h(i+1)
v = ϵ ◦ g−1 ◦ g

(
c(i)v ,

({
c(i)u : u ∈ Nm(v)

}
: m ∈ metapaths

))
(21)

= ϵ ◦ g−1
(
c(i+1)
v

)
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Fig. 4: The power relations of GNNs and WL tests in determin-
ing the logic netlist isomorphism. Different colors represent
different graph representations.

Since both ϵ and g−1 are injective, there always exists an
injective function that maps c

(i)
v to h

(i)
v . According to our

assumption that A fails to decide the isomorphism and the
readout function is injective, we have:{

h(t)
v : v ∈ G1

}
=
{
h(t)
u : u ∈ G2

}
(22)

That is, {
σ
(
c(t)v

)
: v ∈ G1

}
=
{
σ
(
c(t)u

)
: u ∈ G2

}
(23)

which is a contradiction. Therefore, we prove that such a A
always decides the non-isomorphism as long as the heteroge-
neous WL test determines the two graphs as non-isomorphic.

We then consider A being the GNN satisfying the second
sub-condition and other two conditions, i.e., the aggregation,
combination, and readout functions are injective, A separately
aggregates features from the successors and predecessors, and
nodes with different gate types are assigned different initial
node attributes. Similarly, we can show that:

Lemma 7. Let A be a GNN with a sufficient number of GNN
layers. A = directed WL test if 1) the aggregation, combi-
nation, and readout functions are injective. 2) A separately
aggregates features from the successors and predecessors.

Due to the page limit, we do not show the proof here.
Combining with the fact that directed WL test = heterogeneous
WL test if and only if the initial node labels of directed WL
test are different based on the gate types, we can conclude
that GNN = heterogeneous WL test only when conditions in
Lemma 7 hold and the node attributes of A are different based
on the gate types. Therefore, we finish the proof of the second
case.

C. Constructing powerful GNNs
Based on Theorem 1, a guidance for building powerful GNNs
can be naturally provided. However, the theoretical upper
bound is hard to reach since injectivity cannot be guaranteed,
and the requirement of layers being sufficiently deep is not
feasible in practice. Moreover, injective functions are not
unique, meaning that significant efforts are still needed to
determine which GNN setting is better. In this section, we
further explore the influence of some specific GNN settings
on the attacking problem.

Injective function Xu [10] shows that sum aggregators over
the multiset can be injective. that is, there exists a function



f so that h(X) =
∑

x∈X f(x) is unique for each multiset
X . However, both combination and aggregation functions of
directed and heterogeneous GNNs receive ordered multi-sets,
rather than single multi-set. Here, we extend the injective
functions to the case of multiple ordered inputs:

Lemma 8 (injective over ordered inputs). Assume X is count-
able. There exists a function pair (f, f ′) so that h(X,Y ) =∑

x∈X f(x)+
∑

y∈Y f ′(y) is unique for each ordered pair (X,
Y), where X ∈ X and Y ∈ X are two multisets of bounded
size.

Proof. Because X is countable, there always exists a mapping
Z : X → N. At the same time, there exists a number
N ∈ N so that |X| < N for all X since the cardinality of
multisets X is bounded. Then, f(x) = (2N)(−Z(x)), f ′(x) =
(2N)(−Z(x)−N) satisfies the requirement.

The Lemma above can be extended from the case of two
inputs to more inputs: functions can be injective as long as
different inputs are processed by different functions (like f
and f ′ here) separate.

Attention Among various possible options for injective
functions, we may choose the one that is able to generate
more diverse graph embeddings. Intuitively, the more
diverse the results are, the more possible it is for the two
different logic netlists to be distinguished. To make the final
embeddings of different logic netlists as distinct as possible,
we adopt the attention mechanism. In GNNs, different
neighbors are assigned different attentions that based on
weighted sum. Here, we first show that the weighted sum
over neighbors indeed makes the final embeddings more
diverse:

Lemma 9 (attention). Assume x ∈ X is the node fea-
ture drawn from the same distribution with mean µ0 and
variance σ2

0 , and the node features are i.i.d. The coefficient
of variance of x’s weighted sum is always larger than or
equal to the coefficient of variance of x’s sum/mean, i.e.,
CV

(∑
x∈X ϵxx

)
≥ CV

(∑
x∈X x

)
and CV

(∑
x∈X ϵxx

)
≥ CV

(∑
x∈X x

|X |

)
, where

∑
x∈X ϵx = 1.

Proof. Define x′
att =

∑
x∈X ϵxx, x′

sum =
∑

x∈X x, x′
mean =∑

x∈X x

|X | . The coefficient of variance of x′
att, x′

sum and x′
mean

are computed by:

CV (x′
att) =

√
var(x′

att)

E(x′
att)

=

√
(
∑

x∈X ϵ2x) · σ2
0

(
∑

x∈X ϵx) · µ0
(24)

=

√
(
∑

x∈X ϵ2x) · σ0

·µ0
(25)

CV (x′
sum) =

√
var(x′

sum)

E(x′
sum)

=

√
|X | · σ2

0

|X | · µ0
=

σ0√
|X | · µ0

(26)

CV (x′
mean) =

√
var(x′

mean)

E(x′
mean)

=

√
σ2
0

|X |

µ0
=

σ0√
|X | · µ0

(27)
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Fig. 5: The (a) top-1 accuracy and (b) top-3 accuracy in
attacking the LUT-based method. The green bar represents
graphSAGE [14], the light orange bar represents heteroge-
neous NetlistGNN, and the dark orange bar represents directed
NetlistGNN.

By the Cauchy-Schwarz inequality:

1 =

(∑
x∈X

ϵx

)2

=

(∑
x∈X

1 · ϵx

)2

≤ |X | ·

(∑
x∈X

ϵ2x

)
(28)

Combining the equations above, we have:

CV (x′
att) =

√
(
∑

x∈X ϵ2x) · σ0

·µ0
≥ σ0√

|X | · µ0

(29)

This completes the proof.

Depth Theorem 1 assumes a sufficient number of layers,
which are not feasible. But, it is still interesting to explore the
relationship between depth and GNN’s power in logic locking.
We observe the following:

Lemma 10 (Depth). Let k-A be the GNN with depth k,
and all aggregation, combination, and readout functions being
injective, then we have k-A ≤ (k+1)-A

The proof is obvious: if k-A maps two graphs to different
graph embeddings, then (k+1)-A also always maps them to
different graph embeddings since the functions are injective.

From the above lemma, we can see that increasing the depth
of GNNs improves its theoretical upper bound. However, too
deep network makes the model hard to generalize to new data,
and difficult to be trained due to the over-smoothing issue.

III. RESULTS

Comparison with other GNN models on LUT-based logic
lock. We compare graphSAGE on the LUT-based logic lock
using the ITC-99 dataset, as shown in Figure 5. Generally,
NetlistGNN outperforms GNNUnlock on both top-1 and top-
3 accuracy. Interestingly, for the small logic netlist (b14), the
attention mechanism harms the performance due to the over-
fitting in the small datasets.

Attention In Table I, “Ours w.o. attention” is the directed
NetlistGNN without attention module; It is observed that the
attention-based directed model (row ”Ours directed”) is better
than the heterogeneous model (row ”Ours heterogeneous”) and
without-attention variant (row ”Ours w.o. attention”) in larger
cases (sha256, b18, b19), but is worse in small cases. The
reason lies in the model complexity: attention-based GNNs are



TABLE I: Prediction accuracy of GraphSAGE [14], GATv2 [19], and NetlistGNN on Truly Random Logic lock [4]

Dataset ISCAS85 CEP ITC99
Benchmark c5315 c7552 des3 sha256 FIR filter md5 IIR filter b14 b18 b19 b20 b21 b22
# of nodes 3968 4302 13128 53385 16225 21766 26091 8022 114463 223111 20022 20411 29147

GraphSAGE 0.8311 0.8766 0.834 0.9793 0.992 0.9175 0.9692 0.8277 0.8871 0.8754 0.8655 0.8647 0.8659
Ours directed 0.8378 0.9481 0.9538 0.9948 0.994 0.9782 0.9835 0.8986 0.9687 0.9834 0.9556 0.9499 0.9577

Ours heterogeneous 0.9527 0.9675 0.9769 0.9868 1.0 0.9794 0.9956 0.8986 0.9627 0.9739 0.9417 0.9513 0.9622
Ours w. undirected (GATv2) 0.8649 0.8247 0.8803 0.9807 0.976 0.921 0.9714 0.8243 0.9217 0.9157 0.8308 0.866 0.9415

Ours w.o. attention 0.8851 0.9545 0.9622 0.9939 0.992 0.9817 0.9923 0.9122 0.963 0.9819 0.9473 0.9526 0.964
Ours-2 0.7542 0.7727 0.8277 0.8614 0.8842 0.8889 0.8282 0.7027 0.7001 0.6942 0.7614 0.7145 0.8137
Ours-4 0.8581 0.9459 0.9622 0.9915 0.994 0.9817 0.9857 0.8784 0.9671 0.9639 0.9459 0.9472 0.9469

Ours-16 0.8514 0.9091 0.9433 0.991 0.984 0.9851 0.9747 0.8851 0.9592 0.972 0.939 0.9445 0.9505

more complex to train the attention weights, but small cases
are lack of enough labeled nodes for attention-based GNNs,
making it hard to be generalized well.

Depth In Table I, “Ours-k” is the directed NetlistGNN
with k layers (model depth). When the model depth is not
large, the accuracy increases with the depth, which aligns
with our analysis. However, when the model contains 16
layers, the accuracy even drops. We attribute the decline
to the model complexity: deeper model needs more data to
generalize. In other words, deeper model may be more suitable
for larger circuits: As shown in Table I, Ours-16 has a similar
performance on large benchmarks, but the accuracy drops a
lot on small benchmarks.
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