
PEPR: Pseudo-Exhaustive
Physically-Aware Region Testing

Wei Li∗, Chris Nigh∗, Danielle Duvalsaint∗, Subhasish Mitra†, R.D. Blanton∗
∗Electrical and Computer Engineering Department

Carnegie Mellon University, Pittsburgh, Pennsylvania
†Department of Electrical Engineering and Department of Computer Science

Stanford University, Stanford, California

Abstract—Recent reports indicate that existing fault models
and test metrics result in substantial manufacturing test escapes
that cause major system-level challenges such as silent data
corruption resulting from incorrect computations. Such test
escapes are often detected today after system deployment (e.g., in
the field) using a variety of synthetic and application workloads.
In this work, a new test metric is investigated for detecting defects
that escape existing test approaches. PEPR (Pseudo-Exhaustive
Physically-Aware Region) testing comprehensively analyzes both
the physical layout and the logic netlist to identify single- or multi-
output sub-circuits. The resulting sub-circuits are exhaustively
tested to detect timing-independent combinational (TIC) defects.
Analyses demonstrate that PEPR-based scan tests detect TIC
defects perfectly (100%) when examining fail data from over
30,000 14nm failing chips. In contrast, existing fault models
and test metrics might result in up to 92% of TIC defects
being detected fortuitously. Strategies for addressing increased
test pattern count resulting from the pseudo-exhaustive nature
of PEPR testing are also discussed.

Index Terms—Test metrics, fault models, scan test, defects.

I. INTRODUCTION

This paper is inspired by pseudo-exhaustive testing research
over the past four decades. The growing need for highly
thorough testing, beyond today’s practices, to ensure robust op-
eration of increasingly complex digital systems has motivated
us to revisit pseudo-exhaustive testing. For example, several
companies (AMD, Google, Intel and Meta) have recently
highlighted the challenge of silent data corruption (i.e., unde-
tected incorrect outputs) caused by substantial manufacturing
test escapes [1]–[5]. This paper focuses on defects that are
timing- and sequence-independent (TIC [6]). TIC defects are
sequence-independent, and a defective combinational circuit
remains combinational.

1) A significant portion of TIC defects are often detected
fortuitously using existing test techniques. Our fail data
from 14nm chips reveals that up to 92% of TIC defects
may be detected fortuitously.

2) Classical pseudo-exhaustive testing mostly focuses on
TIC defects (although extensions to sequence-/timing-
dependent defects are possible).

3) Thorough analysis of silicon data to quantify the ef-
fectiveness of pseudo-exhaustive testing for TIC defects

forms the foundation for subsequent analysis of sequence-
and timing-dependent defects.

An exhaustive test, which applies all possible input com-
binations to a combinational circuit and checks all corre-
sponding output values, detects all (detectable) TIC defects.
An attractive feature of exhaustive testing is that it does not
require a detailed analysis of TIC defect behaviors. However,
exhaustive testing is not feasible (and likely not necessary) for
large designs. To avoid test pattern explosion, many flavors
of pseudo-exhaustive testing have been published (such as
[7]–[16], and many others). Examples include verification
testing, multiplexer and sensitized partitioning, segmenta-
tion techniques including physical layout-aware segmentation,
gate-exhaustive testing, input pattern faults, partial pseudo-
exhaustive testing, and region-exhaustive testing. However,
industrial use of pseudo-exhaustive testing has been limited
(e.g., [17]) due to test data volume and test-time constraints
imposed by the manufacturing test floor. As a result, test
research has instead focused on a variety of fault models
and test metrics. For example, [18] discussed reduction in test
patterns using cell-aware testing compared to gate-exhaustive
testing (the latter being a form of pseudo-exhaustive testing).

Recent reports (e.g., [1]–[3]) indicate that existing fault
models and test metrics result in substantial manufacturing test
escapes (e.g., one or more in a thousand CPUs [2]) that cause
major system-level challenges such as silent data corruption
from incorrect computations. Test escapes are often detected
today after system deployment (e.g., in the cloud) using a wide
variety of synthetic and application workloads (e.g., [3], [19]).
System-level testing is difficult for several reasons:

1) Each chip might undergo several hours of system-level
testing [3].

2) While substantial test escapes are detected, the thorough-
ness of such system-level tests is unclear.

3) Systematic ways of creating thorough system-level tests
with quantified coverage are in their infancy.

Hence, it is important to revisit highly thorough and sys-
tematic testing techniques, such as pseudo-exhaustive testing,
despite their (increased) test data volume and test time char-
acteristics. Pseudo-exhaustive testing may be applied during
manufacturing testing or in the field (for systems with in-field

scan testing support, e.g., [20], [21] and others).
In this paper, we introduce Pseudo-Exhaustive Physically-

Aware Region (PEPR) testing and demonstrate its effec-
tiveness and practicality using real design and tester data.
PEPR explicitly analyzes both the physical layout and the
logic netlist of the circuit-under-test (CUT) to identify single-
or multi-output sub-circuits (unlike many pseudo-exhaustive
techniques that focus solely on the logic/physical netlist and/or
single-output sub-circuits). These sub-circuits are tested ex-
haustively for TIC defects (similar to sensitized partitioning
[8] although PEPR sub-circuits overlap with each other as
discussed later). Extraction of each PEPR sub-circuit from the
CUT is determined by several factors: (1) three-dimensional
physical layout regions with parameterized length, width and
height dimensions, (2) parameterized number of CUT logic
levels driving the inputs of and receiving the outputs from
the physical layout region, (3) input-output parameters for
fanout and isolated nets (i.e., nets not connected to the sub-
circuit) within a layout region, and (4) parameterized overlap
between various sub-circuits. Unlike many pseudo-exhaustive
techniques, PEPR layout regions are intentionally made to
overlap with each other in all three dimensions to ensure
detection of TIC defects that may span multiple PEPR sub-
circuits. PEPR parameters do not require detailed simulations
of various TIC defect characteristics and derivation of defec-
tive circuit-level behaviors.

In this paper, we make the following contributions:
1) We introduce PEPR and its various parameters, and

present techniques for (a) extracting PEPR sub-circuits,
(b) PEPR sub-circuit collapsing for significantly reduc-
ing the overall sub-circuits to be tested exhaustively
(analogous to fault collapsing) without sacrificing PEPR
thoroughness, and (c) parallelizing PEPR sub-circuit ex-
traction and collapsing for fast runtimes. We demon-
strate the practicality of our PEPR algorithms using an
industrial 14nm chip design with 18.7 million logic
gates. Specifically, a novel tensor-based representation
of layout polygon coordinates enables a neighborhood
search strategy that reduces computational complexity
from O(n2) to O(dn), where d is a small constant and n
is the total number of sub-circuits. Thus, we are able to
extract and collapse over 12 billion sub-circuits down to
1.3 billion in less than an hour using an 8-GPU machine.
Without this reduction, the number of faults associated
with the 1.3 billion sub-circuits would be approximately
114 billion instead of the 37.1 billion examined in this
work. In addition, with a CPU-based implementation the
run-time would exceed 150 hours.

2) We demonstrate PEPR’s effectiveness by using design
and tester data from over 30,000 tested 14nm chips. Our
results demonstrate that all TIC defects can be detected by
PEPR. Most importantly, PEPR ensures a high degree
of thoroughness for TIC defects without relying on
serendipitous defect detection (unlike many existing
fault models and test metrics). In contrast, stuck-at, cell-
aware and gate-exhaustive faults account for detection of

approximately 4.8%, 8.2% and 83.4% of TIC-affected
chips, respectively, when serendipitous detection is not
included.

3) We demonstrate that PEPR parameters can be quickly
tuned based on silicon failures. While other fault models
may require detailed failure analysis, PEPR uses high-
level physical and logical parameters to determine PEPR
sub-circuits and their corresponding inputs and outputs.
For our experiments, this enables a rapid 10-minute
investigative tuning process that includes (i) extraction of
relevant sub-circuits from the full set of 1.3 billion, (ii)
construction of new sub-circuits under various parametric
settings, and (iii) targeted simulations for updated param-
eter evaluation. For the examined design, application of
this process to 47 failing chips (a mere 0.14% of the
32,723 total) that were not accounted for under PEPR’s
initial settings led to improved PEPR parameter update.
This feedback loop promotes optimal PEPR deployment
for new design and process environments with potentially
unknown defect types.

II. PEPR IMPLEMENTATION

Sub-circuit extraction is a major component of PEPR. After
extraction, PEPR sub-circuits are transformed into faults that
are compatible with commercial ATPG tools. The details of
PEPR sub-circuit extraction, fault modeling, and test genera-
tion are described next.

A. Layout to Sub-circuits

Definition. PEPR examines overlapping, three-dimensional
regions, referred to here as voxels, of the physical layout (PVs
for short) and its associated logic (LVs). The physical aspects
of a voxel are specified by three parameters, namely, l, w and
h, where l and w define the length and width of the voxel,
respectively, and h defines the height of a voxel in terms of
the number layers (i.e., h ∈ {1, ..., p}, where p is the total
number of layers in the design layout). The circuit extracted
from a given PV can also be augmented with additional levels
of logic based on two additional parameters, m and n, where
m is the number of logic levels added to the sub-circuit
inputs, and n is the number of levels added to sub-circuit
outputs. The additional levels of logic dictated by m and n
are referred to as the logical voxel, LV for short. There are two
additional parameters, f, q ∈ {0, 1}, for specifying the input-
output treatment of some nets that have fanout to more than
one location, and isolated nets, respectively, within a PV sub-
circuit. Unless otherwise stated, m = n = f = q = 0 is used
throughout this work, that is, the physical portion of voxels are
not augmented with additional levels of logic, and fanout and
isolated nets are not designated as sub-circuit outputs. Next,
the methodology for extracting the nets/gates within each PV
is described.
Physical Voxel Extraction. The physical portions of all voxels
are obtained by sliding a three-dimensional sub-region over
every targeted multi-layer region. Figure 1 illustrates a region
(highlighted in red) with h = 3 and l = w. As mentioned,

Regular Paper

Fig. 1: Physical voxel with h = 3, and its corresponding sub-
circuit.

Algorithm 1 PHYSICAL VOXEL EXTRACTION.
Input: Multi-layer region with dimensions (maxx,maxy, h)
Input: h,w, l,maxx,maxy and β
Output: Set of PVs P

1: P = ∅
2: sub-region size = (l × w × h)
3: Initial sub-region location: (x, y, z), where x = y = 0
4: repeat
5: repeat
6: Place sub-region at (x, y, z)
7: pi = polygons in sub-region
8: ni = nets/gates in pi
9: If ni ⊈ nj for all nj ∈ P then P = ni ∪ P

10: x = x+ β
11: until x ≥ maxx

12: x = 0
13: y = y + β
14: until (x ≥ maxx) and (y ≥ maxy)

voxels will overlap, and the amount of overlap is not only a
function of l, w, and h, but also the step-size parameters βl, βw

and βh for each of the three dimensions. In our experiments,
we set βl = βw = β and βh = 1, and h = 3.

Given the the layout and a mapping from polygon identifiers
to net/cell identifiers, the goal is to determine the nets and cells
in each PV, and its relationship to other PVs. Each multi-layer
region that is targeted is examined using a sub-region defined
by l, w and h using the procedure described in Algorithm 1.
First, a sub-region is initially placed at (x = 0, y = 0) within
the targeted multi-layer region (line 1). The set of nets and
gates corresponding to the polygons p0 found within the first
region are stored in n0 (lines 6 and 7). If ni is not already
in the PV set P , and is not a subset of any other nj that is
already in P , then ni is added to P (line 8). The sub-region
then moves horizontally to the adjacent location (β, y = 0),
where again the sets p1 and n1 in this next sub-region are
compared with the existing sets in P . The loop continues until
the end of the row (i.e., x ≥ maxx) (line 10). At this point,
the sub-region moves to the next row (lines 11 and 12) for
continued PV extraction and comparison. The inner loop (lines
4-8) continues until the entire multi-layer target is completed
(line 13).

All PVs found using Algorithm 1 are net/gate-unique, that
is, there are no set instances in P where ni ⊆ nj . This
outcome is result of line 6 of Algorithm 1 which prevents

(i) duplicate sets (i.e., no ni = nj and (ii) sets that are
proper subsets of other sets (i.e., no ni ⊂ nj). Preventing
duplicate net/gate sets in P means duplicate sub-circuits are
not included in subsequent testing tasks such as ATPG, fault
simulation, etc. A net/gate set ni that is the proper subset of
another set nj means the logic circuit ci corresponding to ni

is completely contained within the circuit cj corresponding to
nj . Exhaustively testing cj also means the exhaustive test of
ci, which means ci does not have to be explicitly considered in
subsequent testing tasks. Removal of equivalent and subsumed
net/gate sets is akin to fault dropping.
Efficiency via Parallelism. Executing line 6 of Algorithm 1
(i.e., the removal of equivalent and subsumed sub-circuits),
while straightforward, is an immense computational task due
to the sheer number of PVs which can easily be in the
billions. To ensure that all equivalent and subsumed circuits
are identified, every pair of net/gate sets ni, nj ∈ P would
have to be compared, which requires a quadratic computation
over an immensely large set.

Given that it is very unlikely that sub-circuits far apart will
have an equivalence or subsumption relationship, we limit
sub-circuit comparison to a much smaller set of neighboring
PVs to improve efficiency. Limiting comparisons to neighbor-
hoods significantly reduces analysis time with inconsequential
penalty. Specifically, if all equivalent and subsumed PVs are
not removed, it means that the performance of ATPG, fault
simulation, etc. can be negatively impacted due to the inclusion
of redundant sub-circuits.

To remove identical and subsumed net/gate sets efficiently,
we employ a divide-and-conquer approach based on the as-
sumption that PVs far apart are likely different. To accomplish
this, we first divide the layout into multiple sub-layouts as
depicted in step 1 of Figure 2. Then, all the sub-layouts are
analyzed in parallel to extract PVs from the sub-layouts (Step
2 in Figure 2). Figure 2, steps 3-5, illustrates the removal
of redundant PVs within a neighborhood. The parameter d
defines the neighborhood for a given PV, where d is the
number of sub-region positions away that a PV can be for
comparison. In Figure 2, d = 3 for the target PV shown in
green (step 3) and its PV neighbors (shown in grey). Step 4
illustrates the removal of some neighboring PVs presumably
due to equivalence or subsumption.

Later, we demonstrate that this massive amount of paral-
lelism enables efficient extraction of all unique PVs in less
than an hour for an industrial design with 18.7M gates. In
addition, there is little difference in P when analyzing the
entire layout singularly or the sub-layouts in parallel.
Sub-circuit Formation. The nets and gates within a PV imply
a sub-circuit. Given that PV extraction does not account for
the logic netlist in any way, it is possible that the implied
sub-circuit is not fully connected. That is, there can be an
isolated net(s) within a PV that is not in the transitive fanin
or fanout of any of the other gates/nets in the PV. The sub-
circuit is essentially a super gate with inputs and outputs. The
identification of the super gate inputs and outputs is outlined
in Algorithm 2. To determine which nets correspond to the

Regular Paper

2

1

3

4

5

Fig. 2: Illustration of the divide-and-conquer approach used
for extracting unique PVs.

inputs and outputs of the sub-circuit, each net/gate is traversed
L logic levels forward to obtain the transitive fanout for the
PV, and backwards L levels to determine its transitive fanin
(lines 4-5).1 Next, each PV net is analyzed to determine where
it falls among four categories, namely: (1) input, (2) output,
(3) internal, and (4) isolated. Specifically, lines 7-8 (9-10)
determine if a net is a sub-circuit input (output). If an input
drives additional fanout that is not connected to a voxel output,
it is also assigned as an output when f = 1 (lines 11-13). If a

1The parameter L is used to limit (i) the search space for identifying the
sub-circuit inputs and outputs, and (ii) the resulting size of the sub-circuit.
The parameter L should not be confused with the parameters m and n. L
does not add logic to the PV but instead is used to determine input-output
relationships among nets/gates within the PV. On the other hand, m and n
indicate the number of logic levels added to the input and output nets of the
PV, respectively, to create the final voxel that has a physical portion (PV) and
a logical portion (LV).

Algorithm 2 SUB-CIRCUIT FORMATION.
Input: Net/gate list ni, isolated net parameter q, fan-out parameter

f , level search parameter L
Output: inputs, internals, and outputs of sub-circuit ci

1: S = nets in ni

2: S = S ∪ input-output nets of each cell in ni

3: output = ∅, inputs = ∅
4: fanout = transitive fan-out of each net in S within L levels
5: fanin = transitive fan-in of each net in S within L levels
6: for si ∈ S do
7: if si ∈ fanout and si /∈ fanin then
8: outputs = outputs ∪ si
9: else if si /∈ fanout and si ∈ fanin then

10: inputs = inputs ∪ si
11: if f = 1 and fanout(si) ̸⊂ fanin then
12: outputs = outputs ∪ si
13: end if
14: else si is an isolated net
15: if q = 0 then
16: inputs = inputs ∪ si
17: else
18: inputs = inputs ∪ si
19: outputs = outputs ∪ si
20: end if
21: end if
22: end for
23: internals = S − inputs− outputs

signal is not either in the fanout or fanin, then it is an isolated
net (line 14) and treated as an input only (line 16), or as an
input and output (lines 18-19) depending on the parameter
value of q. Finally, nets that are neither inputs or outputs are
internal nets (line 20) which actually are not explicitly needed
to describe sub-circuit exhaustive test.

Figure 3 illustrates an example of identifying the I/O of a
sub-circuit for differing search values of L. The red signals
indicate nets within a PV. For L = 0, both the fanin and
fanout sets (lines 4 and 5 of Alg. 2) are empty. This means
all three nets will be deemed as isolated and labeled as either
an input or both an input and output depending on the value
of parameter q. For Figure 3(a), for L = 1, the fanin and
fanout sets are {N7, N8, N9, N10, N11, N12, N15, N16} and
{N14, N15, N18, N20}, respectively, which results in N12 and
N16 being inputs, and N18 functioning as the sub-circuit
output. If the parameter f is one, N12 is labeled as an output
because it drives fan-out, N14, that is not in the path of the sub-
circuit output. In Figure 3(b), for L = 1, the fanin and fanout
sets are {N8, N9, N15, N16, N13, N14} and {N20, N21, N15},
respectively, which means PV nets N12, N17 and N19 are
deemed isolated nets. For L = 2, the fanin and fanout
sets are {N4, N5, N7, N11, N12, N10, N6} and {N19, N22},
respectively, which results in N12 and N17 being deem inputs,
and N19 functioning as the sub-circuit output. If the parameter
q is set to one, the isolated net, N17 is both an input and output
of the sub-circuit.

Performing path tracing to identify any logical connection
between nets within a given PV is not required, meaning that
L = 0 can be used. If L = 0, each net in a PV is treated
as an input and an output. However, treating each net as both

Regular Paper

an input and output leads to a higher IP fault count, many of
which are untestable due the likelihood that nets in a PV are
logically connected. Therefore, L = 2 is used in all subsequent
experiments.

(a)

(b)

Fig. 3: (a) Three nets (shown in red) from a PV and its
corresponding circuitry. All three nets (N12, N16 and N18) are
all within one logic level from each other. (b) In this second
circuit, N12 and N19 are separated by two logic levels, and
N17 is neither connected to N12 nor N19.

B. Fault Modeling

Generating test vectors that exhaustively test a voxel-
induced sub-circuit requires that all possible faulty circuit
functions be efficiently modeled. For this purpose, the input
pattern (IP) fault model [22] is employed. An IP fault is
defined as ip → (o, o′), where ip is a circuit input pattern,
o is the expected output, and o′ is the erroneous output that
results if the circuit is faulty. For an n-input, m-output circuit
there are 2n · (2m − 1) possible IP faults. Generating tests
for all possible IP faults for a circuit is equivalent to pseudo-
exhaustively testing the circuit.

Unfortunately, existing commercial ATPG tools cannot
model arbitrary faults that lead to more than one error site. For
example, the IP fault 000 → (00, 11), which is meaningful for
a full-adder circuit, cannot be analyzed because both outputs
are erroneous. So instead of performing test generation for
all 2n · (2m − 1) IP faults, only the (2n · m) IP faults with
a single output is erroneous is considered. For example, for
the 3-input, 2-output full-adder circuit, the total number of IP
faults is 2n ·(2m−1) = 23 ·(22−1) = 24, while the number of
single-error faults is 2n ·m = 23 · 2 = 16. Although multiple-
error IP faults cannot be analyzed explicitly, it is likely the case
that tests for the single-error faults also detect multiple-error
faults. The reason being is that any propagation of multiple
errors due to the activation of multiple-error fault are unlikely
to completely mask. This means the detection of the single-
error faults would also detect multiple-error faults.

C. Evaluation

When developing a new fault model or test metric, it is
essential to evaluate its effectiveness in detecting defects.
Conventionally, new metrics/models have been evaluated em-
pirically, specifically with experiments in which (production)
ICs are tested using multiple test sets generated using new and
existing metrics and models. Typically, the “best” is equated
to the model/metric that detects the largest number of defects.
In addition, the number of defective ICs that are uniquely
detected, typically depicted in the form of a Venn diagram, is
also considered to be a strong indicator of relative effectiveness
[23]–[26]. However, as discussed in [27], deeper analysis is
required to really understand the effectiveness of various fault
models and test metrics.

A conventional test experiment to evaluate PEPR on silicon
will be conducted in the near future. But here, we use the
diagnosis-based technique described in [28], [29] to assess
the quality of the stuck-at and cell-aware fault models, and
the gate-exhaustive and PEPR test metrics. The work in
[29] challenges the belief that model/metric effectiveness is
correlated to the number of failing ICs detected. For instance,
a stuck-at test set typically detects a large percentage of failing
ICs, but it is well known that few defects truly exhibit stuck-
at fault behavior. In other words, stuck-at tests serendipitously
detect other fault types, which means there are no guarantees
that stuck-at tests will detect defects.

Model/metric effectiveness in [29] examines each failing
chip individually. For each failing chip the failure behavior
measured by the ATE (referred to as a fail log), and the
expected behavior predicted by a given defect model, or the
possible behavior assumed by a test metric are compared.
Through this comparison, we can easily conclude if the
model/metric is effective for detecting this particular chip
failure, or is fortuitous. Applying this approach to a large
number of fail logs provides significantly more data for
evaluating model/metric effectiveness.

In this evaluation, we compare the stuck-at [30] and cell-
aware [26] fault models, and the gate-exhaustive [13] and
PEPR test metrics. The flow diagram in Figure 4 describes
the details of the comparison procedure. Starting with a fail
log obtained from testing with a production test vector/pattern
set V , the resulting tester response is used to identify “tester
failing patterns” VT ⊆ V . Physically-aware diagnosis is used
to identify circuit locations that are likely failure sources,
from which a comprehensive fault list is extracted for the key
fault models and test metrics. That is, all the faults associated
with the locations are identified to determine which faults
are detected by the test pattern set V . Specifically, the faults
are simulated, and the resulting failing patterns are obtained
for each fault i, referred to as “simulator failing patterns”
VSi ⊆ V .

To determine whether a particular metric/model ex-
plains/captures a tester response, a comparison is made be-
tween VT and VSi . The method employed for comparison is
commensurate for the fault models and test metrics in order

Regular Paper

Fig. 4: The flow employed for diagnosis-based model/metric evaluation.

(a) (b)

Fig. 5: Illustration of tester-response comparison for (a) a fault
model and (b) a test metric.

to align with the intent of the two concepts. A fault model is
intended as an accurate representation or predictor of defect
behavior, and as a result, a fault simulation response is a match
with a tester response when the set of failing patterns for both
are equal, that is, VT = VSi

. If VT ̸= VSi
, the response of the

tester is not explained by a defect assumed by the fault model.
An example illustrating this comparison is given in Figure 5a.

Test metrics are intended to evaluate test-set quality, there-
fore the capability of a test metric should correlate to the
number of defects detected that are explained by possible
behaviors defined by the metric. As a result, when a given
set of signals is identified as relevant to a metric (e.g., gate
I/O for gate exhaustive, the signals in a voxel for PEPR), the
superset of failures for all values of those signals is used as
the set of simulation-failing patterns. Therefore, a match for
a test metric occurs when its fail patterns subsumes the set of
tester-failing patterns, that is, VT ⊆ VSi . An example of this
form of comparison for a test metric is provided in Figure 5b.

Fault model and test metric evaluation as described requires
some details of an IC tester response to be described. First, any
tester response (fail log) that reached tester-pin count limits
should not be considered because incomplete failure data
may confound analysis. Second, as mentioned, we consider
only potential fault locations as reported by physically-aware

diagnosis to eliminate meaningless comparisons. Third, to
avoid potential aliasing of multiple defects, chips with a
diagnosis result that indicates multiple defects are also not
considered. Application of this evaluation methodology to fail
data from a fabricated 14nm test-chip design is provided in
the next section.

III. COST-BENEFIT EXPERIMENTS

The costs and benefits of applying PEPR to a 14nm
industrial test chip is explored here. The test-chip design has
12 cores that total to 18.7M gates, and has been particularly
designed to improve fault testability and diagnosability. The
costs of applying PEPR is examined in terms of voxel identi-
fication and ATPG, while the benefits are examined using the
diagnosis-based approach described in the previous section.
Three points of comparison are included, namely, stuck-at,
cell-aware and gate-exhaustive.

To obtain the physical portions of voxels (PVs), the entire
chip layout is analyzed to remove unnecessary (equivalent and
subsumed) PVs. A step-size of β = 50 nm with a PV of
three layers and 125 × 125 nm2, i.e., l = w = 125 and
h = 3 is adopted. In addition, the search range d for PV
comparison is d = 20, which means that each PV is compared
with neighboring PVs whose Manhattan distance is within
20 × 50 = 1000 nm. PV size is chosen to be approximately
10× that of the chip technology (14 nm).

A. ATPG

The PVs for one of the 12 chip cores are used to create
IP faults for the PEPR metric. The signals in the PVs are
translated into pin names, and the fan-out and fan-in within
L = 2 logic levels of each pin are obtained. Using Algorithm
2 (Section II) with f = q = 0, the fan-out and fan-in signals
are used to determine if a pin in a PV is considered an input
and/or an output. The input distribution for each PV extracted
from each triplet of layers is depicted in Figure 6. The y-axis
gives the number of outputs per PV, while the x-axis provides
the number of PVs with that specified number of outputs. The
various colors represent the number of inputs for a PV.

Regular Paper

The higher-layer regions, M2-M3-M4 and M3-M4-M5, have
fewer equivalent and subsumed PVs, and the distributions for
those regions have a higher average number of inputs and
outputs as compared to the lowest region M1-M2-M3. For
the M1-M2-M3 region, the average number of inputs per
PV is three, and the average number of outputs per PV is
one. However, for region M3-M4-M5, the average number of
inputs and outputs per PV is six. The number of inputs and
outputs per PV obviously changes with the size of the PV.
For example, with a PV size of 250× 250 nm2, the average
number of inputs per PV for region M3-M4-M5 is 12.

Table III provides fault counts, test set sizes, achieved fault
coverages and ATPG run times for the stuck-at and cell-aware
fault models, and the gate-exhaustive and PEPR test metrics.
Because the evaluated design is a representative core from
a test chip with high testability and diagnosability, we find
that there is not a significant difference in test pattern counts
between stuck-at, cell-aware, and gate exhaustive. While this
design observes a 10%− 15% increase in number of patterns
with each subsequent model/metric, previously-examined in-
dustrial designs have observed a 1.5× increase in cell-aware
pattern count over stuck-at [26], and a 4× increase in gate
exhaustive pattern count over cell-aware [18].

As expected, there is a substantial increase in both ATPG
runtime and test set size for PEPR. It should be noted however
that the PEPR runtime and test set size are likely inflated due
to the need to partition the large number of IP faults (37.1B)
that are considered. Specifically, due to compute limitations,
it is only possible to perform ATPG on approximately 125M
faults (200 GB of fault definition files) at a time. The specific
break down of the ATPG runs for PEPR by layer is included
in Table I. A total of 183 ATPG runs are required to complete
the test generation for 37.1B faults. This situation undoubtedly
leads to a larger test set because tests generated for a given
partition are not fault simulated against all the faults in other
partitions. Moreover, the lack of fault simulation against all
faults clearly leads to an increase in ATPG runtime.

To demonstrate the potential for reducing test set size, we
conducted the following experiment. For faults in the M1-
M2-M3 and M2-M3-M4 regions, 378.4M faults are sampled
randomly. ATPG is performed on each sample separately, and
runtime and test set size are accumulated. Another ATPG is
performed on all the samples simultaneously and the resulting
runtime and test size is noted. Both experiments are performed
on a machine with 1-TB of memory2. Table II gives the results
of this comparative experiment. The accumulated runtime and
test set size for the separate ATPG runs are 59.1 hours and
4,515 tests, respectively. For the ATPG run that included all
samples, the run time and test set size are 90.3 hours and 1,659
tests, respectively, which represents a 63.3% reduction in test
set size and an increase of 52.8% in runtime. The increase
in runtime is expected because the ATPG tool is running test
generation and fault simulation on 4× the amount of faults. If

2Note that the 1-TB machine used for this experiment has more resources
than the one used to create the data in Table I.

the same level of reduction is applied to Table I, the test set
size for all faults in Table I would reduce to 192,257 tests.

B. Diagnosis

Using the methodology described in sub-section II-C,
32,723 tester responses from all cores of the 14nm test chip
are examined for fault model/test metric evaluation. The tester
responses were collected using a pattern set generated to
target multiple-detect static cell-aware faults. For the initial
evaluation, a tester response is considered “matched” (as
illustrated in Figure 5) if a fault for any of the diagnosis
suspect sites align with the tester response. The results of this
evaluation are summarized in Table IV.

Only a small portion of tester responses – just 18.7% –
aligned with the stuck-at fault model, which is expected as
the model is understood to be too simplistic for accurate
representation of most defects. The cell-aware fault model
matched the tester response for 30.9% of the cases, suggesting
that many of the defects are either influenced by signals
outside of the suspect cell, or have cell behavior more complex
than the provided models for intra-cell defects. In contrast, the
gate exhaustive test metric aligns with the tester response for
91.6% of cases. Finally, in more than 99% of cases, initial
PEPR settings match the tester response. With a fine-tuning
of parameters, PEPR easily achieves a 100% match for all
cases. Based on this evaluation, PEPR provides a significant
value when evaluating the effectiveness of a test set.

In the left side of Table IV a thermometer relationship is
shown to clearly indicate the number of matches among the
models and metrics examined. It can be observed that each
subsequent model/metric matched all of the tester responses
of the one before, plus some additional tester responses.
Specifically, the cell-aware fault model matched all the tester
responses that match the stuck-at fault model and some more,
gate exhaustive matched all tester responses matching cell-
aware and some more, and PEPR matched all tester responses
matching gate exhaustive and some more.

We also examine a more strict evaluation, in which a tester
response is considered matched only if every suspect site from
a diagnosis report has a corresponding fault that matches with
the tester response. This evaluation assumes that the defect
could exist at any of the reported suspect locations, and as a
result, all should be effectively covered. Detailed in Table V,
this form of evaluation shows that PEPR still retains proper
alignment for the vast majority of tester responses. In contrast,
stuck-at and cell-aware fault models match with just 4.8% and
8.2% of tester responses, respectively, suggesting they may be
unable to appropriately represent all observed potential silicon
defect behaviors.

In performing the evaluation of the PEPR test metric,
there is a small set of 47 tester responses (0.14%) that did
not initially match with the PEPR test metric. In all 47 of
these cases, diagnosis called out bridge defect suspects. Each
mismatching tester response has been investigated to identify
the reason why the PEPR test metric, with the parameters used,
did not properly align with the observed failure behavior.

Regular Paper

0 0.5 1 1.5
·107

1

2

3

4

5

6

7

8

of PVs

#
of

ou
tp
u
ts

1 2 3 4 5 6 7 8

(a)

0 0.25 0.5 0.75 1

·107

1

2

3

4

5

6

7

8

9

10

11

of PVs

1 2 3 4 5 6 7 8 9 10 11

(b)

0 0.25 0.5 0.75 1

·107

1

2

3

4

5

6

7

8

9

10

11

of PVs

1 2 3 4 5 6 7 8 9 10 11

(c)

Fig. 6: The input and output distributions for the PVs extracted from (a) the M1-M2-M3; (b) the M2-M3-M4; and (c) the
M3-M4-M5 regions. The color of the bars denote the number of inputs in the PV while the y-axis shows the number of
outputs. The x-axis provides the number of PVs with each input-output combination.

TABLE I: PEPR ATPG statistics for one core of a 14nm test chip.

No. ATPG % detected % redundant Test Fault Total
Region No. faults No. tests runs faults faults coverage coverage runtime (h)

M1-M2-M3 1.7 B 5,306 7 59.4% 36.4% 95.4% 59.4% 490.5
M2-M3-M4 9.9 B 124,287 74 52.9% 42.5% 95.4% 52.9% 2,588.6
M3-M4-M5 25.5 B 394,270 102 62.6% 29.2% 91.8% 62.6% 6,489.6

TABLE II: ATPG statistics for parallel and single runs.

No. ATPG Total
No. faults runs No. tests runtime (h)
378.4 M 4 4,515 59.1
378.4 M 1 1,659 90.3

For four of the 47 cases, the two signals in the called-out
suspected bridge defect have a minimum distance greater than
the 125nm voxel size used in layout extraction. Thus, there are
no voxels that includes both nets of each bridge, and as a result
these four bridges are not part of a pseudo-exhaustive test. For
three of the four bridges, the minimum distance between the
signals is 160nm, and for the fourth the minimum distance
is 184nm. To ensure such a case would align with PEPR,
the dimensions l and w could be easily increased for layout
extraction. To guarantee that all signals within 184nm will
exist within a voxel, it is required that length l, width w, and
step-size β are set such that l − β = w − β > 184nm. With
a larger voxel, additional nets would be included within the
same voxel, at the cost of increased number of signals and
complexity for the identified voxels.

For 23 of the 47 cases, we found each to exhibit the fol-
lowing characteristics and behavior related to fan-out signals.
The bridged nets are contained in at least one voxel. The
bridge nets also exhibited fan-out, and error(s) from the bridge
only propagated along the fan-out. The voxel however does
not include this fan-out, which means the fan-out nets are
not subject to the pseudo-exhaustive test of the corresponding

voxel. However, when using the parameter setting of f = 1,
we can require all voxel signals with fan-outs to be treated
as outputs. This would subject those nets to the pseudo-
exhaustive test of the larger voxel, which would improve
completeness at the cost of an increased number of defined
faults for each voxel.

The remaining 20 of 47 cases again revealed that the bridged
nets are contained in at least one voxel. In these cases, one of
the bridged nets is found to be logically isolated from all of the
other signals of the voxel. For the initial parameter settings that
include q = 0, an isolated net is treated only as an input to the
voxel. Because the isolated net is not treated as an output, an
error propagating through this net could not be used to detect
the fault. To ensure detection of these cases, the parameter
setting of q = 1 could be used to require isolated signals be
defined as both outputs and inputs. This updated parameter
setting would come at the cost of an increased number of
defined faults for each voxel.

As demonstrated above, the investigation of the mismatched
cases (using conventional diagnosis tools) gives us the oppor-
tunity to learn “high-level” defect characteristics and tune the
key parameters of PEPR. For example, with the knowledge
that bridge defects can span distances of 184nm in the
examined design and process, the parameters l, w, and β
are modified to include such cases. A key aspect of PEPR
is that a very detailed defect characterization (e.g., resistance
values associated with defects or exact defect locations) is not
required. Thus, PEPR is automatically adjustable for trading
off cost and test quality. This feedback loop can provide signif-

Regular Paper

TABLE III: ATPG execution results for examined models/metrics.

Fault model No. faults Patterns Fault coverage Runtime
Stuck-at 12.4 M 176 98.3% 0.5 h

Cell-aware 89.3 M 200 96.6% 2.3 h
Gate exhaustive 17.0 M 220 55.3% 4.0 h

PEPR 37.1 B 523,863 59.8% 9,568.7 h

TABLE IV: Matched tester responses for examined fault models and test metrics requiring alignment with at least one suspect.

Model/Metric Matched responses (of 32,723 total)
No. matched % of total

Stuck-at 0 0 0 6,105 6,105 18.7%
Cell-aware 0 0 4,001 6,105 10,106 30.9%

Gate exhaustive 0 19,853 4,001 6,105 29,959 91.6%
PEPR 2,765 19,853 4,001 6,105 32,723 100.0%

TABLE V: Matched tester responses for examined fault models and test metrics requiring alignment with all suspects.

Model/Metric Matched responses (of 32,723 total)
No. matched % of total

Stuck-at 0 0 0 1,579 1,579 4.8%
Cell-aware 0 0 1,109 1,579 2,688 8.2%

Gate exhaustive 0 24,615 1,109 1,579 27,303 83.4%
PEPR 5,420 24,615 1,109 1,579 32,723 100.0%

icant value, particularly in new design or process technology
environments where defect behaviors may be unknown, or
detailed and exhaustive defect characterization may be too
complex or infeasible.

In practice, this automated feedback loop can be triggered
once a mismatch has been identified, which can arise from the
diagnostic evaluation of any set of production test patterns.
This process would consist of the following steps: a) identi-
fication of the reported faulty signals, b) localization of the
faulty signals within the layout, c) construction of new voxels
with alterations to layout extraction physical parameters l, w
and β, logical parameters m and n, and additional parameters
q and f , d) translation of new voxels into IP faults, and
e) fault simulation of tester failing patterns for new IP faults
to determine detection status.

In our experience with the examined design, this process
can occur rapidly when fully automated. Steps a) and b) are
immediate through a simple lookup. Step c) requires an ultra-
targeted layout extraction that completes within one minute,
and step d) simply converts the resulting signals to IP faults.
The most time consuming is step e), where fault simulation
of this targeted list of IP faults is performed for the tester
failing patterns. In full, we have found this process to require
an average of 10 minutes among these 47 cases, and therefore
can easily be performed as needed to continually learn and
improve PEPR parametric settings.

IV. CONCLUSIONS

At the cost of increased ATPG time and test set size, we
have demonstrated that PEPR has the capability to detect
all TIC defects deliberately (as opposed to fortuitously). We
believe however that both ATPG time and test set size can be
substantially reduced with improvements in currently-available

EDA tools, and redundancy analysis performed at the voxel
level.

Moving forward, the scope and capabilities of PEPR will
be expanded in several ways. First, we plan to incorporate
timing-dependent and sequence-dependent defects into the
PEPR methodology. This means tasks such as voxel collapsing
have to be re-examined, for example. Moreover, ideas from
small delay defect testing may need to be incorporated. Next,
given that our analyses here relied on a 14nm test chip,
it is important to investigate how PEPR scales with denser
technologies. For example, should voxel size remain the same
or change? Will sub-circuit inputs and outputs be too large for
test generation in terms of run-time and test set size? These
and surely other questions must be thoroughly investigated
to determine PEPR’s practicality in the future. Third, as dis-
cussed earlier, PEPR parameters can be customized relatively
easily for a given CUT. That is, the insights gathered from
conventional diagnosis flows (without detailed analysis of
defect characteristics such as resistance values associated with
the defects) can be directly used as feedback to tune/update
the PEPR parameters for balancing cost and quality. Fourth,
the use of PEPR tests does not have to be relegated to
the time of chip fabrication. Approaches such as [20], [21]
have demonstrated that highly thorough test patterns can be
efficiently applied to chips while operating in the field. Finally,
a classic test chip experiment is now in the works with an
industrial partner. Similar to past experiments, a multitude of
test sets will be generated using various fault models and
test metrics all of which, will be applied to state-of-the-art
commercial chips.

ACKNOWLEDGEMENT

We would like to thank and acknowledge John Carulli and
Rohan Deshpande of Globalfoundries for detailed discussions

Regular Paper

regarding the design, test and diagnosis of their 14nm test
chip. We also like to thank Google for their sponsorship of
this project, and in particular, Bharath Parthasarathy, Rama
Govindaraju and Peter Hochschild for their on-going input
and feedback provided throughout this project.

REFERENCES

[1] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-
ganathan, D. E. Culler, and A. Vahdat, “Cores That Don’t Count,”
in Workshop on Hot Topics in Operating Systems. Association for
Computing Machinery, 2021.

[2] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent Data Corruptions at Scale,” CoRR,
2021.

[3] H. D. Dixit, L. Boyle, G. Vunnam, S. Pendharkar, M. Beadon, and
S. Sankar, “Detecting Silent Data Corruptions in the Wild,” 2022.

[4] J. Markoff, “Tiny Chips, Big Headaches,” The New York Times, Feb
2022.

[5] R. Govindaraju, S. Hansley, S. Sankar, A. van de Van, and
S. Mitra, “HW Operation at Scale Reliability to Address Silent
Data Corruptions (Panel Discussion),” in Open Compute Project
Global Summit. Open Compute Project, 2021. [Online]. Available:
https://www.youtube.com/watch?v=3yhg4Gt8M E

[6] E. McCluskey and C.-W. Tseng, “Stuck-Fault Tests vs. Actual Defects,”
in IEEE International Test Conference, 2000, pp. 336–342.

[7] E. McCluskey, “Verification Testing,” in Design Automation Conference,
1982.

[8] E. McCluskey and S. Bozorgui-Nesbat, “Design for Autonomous Test,”
IEEE Transactions on Circuits and Systems, vol. 28, no. 11, 1981.

[9] E. McCluskey, “Verification Testing — A Pseudoexhaustive Test Tech-
nique,” IEEE Transactions on Computers, vol. C-33, no. 6, pp. 541–546,
1984.

[10] ——, “Quality and Single-Stuck Faults,” in IEEE International Test
Conference, 1993, p. 597.

[11] J. Udell and E. McCluskey, “Pseudo-Exhaustive Test and Segmentation:
Formal Definitions and Extended Fault Coverage Results,” in Interna-
tional Symposium on Fault-Tolerant Computing, 1989, pp. 292–298.

[12] J. M. Acken, “Deriving Accurate Fault Models,” Ph.D. dissertation,
Stanford University, 1988, copyright - Database copyright ProQuest
LLC; ProQuest does not claim copyright in the individual underlying
works; Last updated - 2022-02-26.

[13] K. Y. Cho, S. Mitra, and E. J. McCluskey, “Gate Exhaustive Testing,”
in IEEE International Test Conference, Nov 2005, pp. 1–7.

[14] A. Jas, S. Natarajan, and S. Patil, “The Region-Exhaustive Fault Model,”
in Asian Test Symposium, 2007, pp. 13–18.

[15] S. Hellebrand, H.-J. Wunderlich, and O. Haberl, “Generating Pseudo-
Exhaustive Vectors for External Testing,” in IEEE International Test
Conference, 1990, pp. 670–679.

[16] A. Mumtaz, M. E. Imhof, and H.-J. Wunderlich, “P-pet: Partial pseudo-
exhaustive test for high defect coverage,” in IEEE International Test
Conference, 2011.

[17] P. Gelsinger, “Built-in Self-test of the 80386,” in IEEE International
Conference on Computer Design, 1986.

[18] F. Hapke, J. Schloeffel, H. Hashempour, and S. Eichenberger, “Gate-
Exhaustive and Cell-Aware pattern sets for industrial designs,” in Inter-
national Symposium on VLSI Design, Automation and Test, 2011, pp.
1–4.

[19] K. Serebryany, M. Lifantsev, K. Shtoyk, D. Kwan, and P. Hochschild,
“SiliFuzz: Fuzzing CPUs by Proxy,” 2021.

[20] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous Chip
Self-Test Using Stored Test Patterns,” in Design, Automation and Test
in Europe, 2008.

[21] S. Chakravarty, “Anatomy of an In-Die Tester for Infield Testing,” in
Silicon Valley Design for Test Workshop, 2019.

[22] R. D. Blanton and J. P. Hayes, “Properties of the Input Pattern Fault
Model,” International Conference on Computer Design, pp. 372–380,
1997.

[23] S. Ma, P. Franco, and E. McCluskey, “An Experimental Chip to
Evaluate Test Techniques Experiment Results,” in IEEE International
Test Conference, 1995, pp. 663–672.

[24] P. Nigh, W. Needham, K. Butler, P. Maxwell, and R. Aitken, “An
Experimental Study Comparing the Relative Effectiveness of Functional,
Scan, IDDq and Delay-Fault Testing,” in IEEE VLSI Test Symposium,
1997, pp. 459–464.

[25] B. Benware, C. Schuermyer, N. Tamarapalli, K.-H. Tsai, S. Ran-
ganathan, R. Madge, J. Rajski, and P. Krishnamurthy, “Impact of
Multiple-Detect Test Patterns on Product Quality,” in IEEE International
Test Conference, vol. 1, 2003, pp. 1031–1040.

[26] F. Hapke, et al., “Cell-Aware Test,” IEEE Transactions on Computer-
Aided Design of Integrated Circuit and Systems, vol. 33, no. 9, pp.
1396–1409, September 2014.

[27] R. Guo, S. Mitra, J. Lee, S. Sivaraj, and E. Ameen, “Comparison of
Test Metrics: Stuck-at, N-Detect and Gate-Exhaustive,” in IEEE VLSI
Test Symposium, 2006.

[28] Y.-T. Lin and R. D. Blanton, “Test Effectiveness Evaluation through
Analysis of Readily-Available Tester Data,” in IEEE International Test
Conference, 2009, pp. 1–10.

[29] ——, “METER: Measuring Test Effectiveness Regionally,” Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 7, pp. 1058–1071, 2011.

[30] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Springer Publishing
Company, Incorporated, 2013.

Regular Paper

