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Abstract
The exploding of deep learning techniques have motivated the

development in various fields, including intelligent EDA algorithms
from physical implementation to design for manufacturability. Point
cloud, defined as the set of data points in space, is one of the most
important data representations in deep learning since it directly pre-
serves the original geometric information without any discretization.
However, there are still some challenges that stifle the applications of
point clouds in the EDA field. In this paper, we first review previous
works about deep learning in EDA and point clouds in other fields.
Then, we discuss some challenges of point clouds in EDA raised by
some intrinsic characteristics of point clouds. Finally, to stimulate
future research, we present several possible applications of point
clouds in EDA and demonstrate the feasibility by two case studies.
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1 Introduction
The exploding of deep learning techniques has motivated the

development of intelligent EDA algorithms from physical imple-
mentation to design for manufacturability [1–4]. Among various
deep learning based methods, the study on irregular data is one
of the core subjects in enormous EDA problems and optimization
algorithms. Irregular data is particularly good at modeling pairwise
relationships among different discrete items and preserving original
features without any information loss, thereby making it a crucial
topic in EDA considering that most underlying structures are also
organized in a non-Euclidean space.

In the history of EDA development, considerable attention of
irregular data has been paid to graph, a classical abstract represen-
tation that has been widely investigated over the past few decades
by extensive elegant graph algorithms and graph-based learning
approaches. Recently, benefited from the presence of a large amount
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Figure 1: An example of placement result (reproduced from
[13]). The standard cells marked by different colors can be
regarded as scattering point set.

of data and the fact that graph is a natural and powerful representa-
tion for many fundamental objects in EDA applications, some deep
learning-based attempts on graphs are made in the EDA field [5].
These efforts have demonstrated the overwhelming representation
power of graph when representing some basic elements in EDA
applications such as netlist [5–11] and layout [12]. To solve the irreg-
ularity of the graph, most works adopt a convolution-like operation
referred to graph convolution. The graph convolution works in a
message-passing way between neighbors, and thus makes it flexible
with graph structures that are unordered and variable in size.

However, graph is not appropriate for some data formats in EDA
since it strictly constrains inter-connected relationships. That is,
graph construction requires the definition of connections (edges)
among objects (nodes) to leverage the graph abstraction, which
brings about unexpected information bias. For example, the pin set
for the tree construction does not contain connection information
between any two pins, and a graph abstraction of the pin set may
even mislead the construction result. In these cases, point cloud,
defined as a set of data points in space, is a better representation
since it directly preserves the original geometric informationwithout
any discretization or misinterpretation.

To provide insights into point clouds, we summarize two viable
(but not limited to) application directions of point clouds in EDA.
First, it is interesting to see that point clouds, i.e., the sets of points,
have already existed in many EDA problems as the fundamental
structure of input. For example, both routing tree construction and
clock tree construction are to build a tree based on a point cloud
including the sink pins and the root pin. Another potential appli-
cation happens after placement: some predictions or estimations
after placement can view the placement output (shown in Figure 1)
as a point cloud as long as the interconnection between cells plays
a trivial role in these tasks. Moreover, point clouds can be used to
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Figure 2: Examples of the transformation from layout to
point cloud. Figure 2(a) is the original GDSII layout, the
hotspot is marked as red rectangle. Figure 2(b) is the trans-
formed point cloud.

represent solid objects in a finite element analysis context. In other
words, a point cloud representation boils down mathematically com-
plex geometry into a relatively finite number of points. The layout
pattern is a representative case. Conventional representation for the
layout patterns is to simply convert the polygon shapes of a layer
into an image [14, 15], which suffers from several drawbacks. First,
the obtained image may be too large (typically > 1000 × 1000) to be
space and computation friendly, thus restricting the scalability of
the entire framework. Second, the geometry and topology features
of images are usually exceptionally obscure, thereby resulting in
possible redundancy. In contrast, point cloud representation resolves
both drawbacks. By sampling key points on the boundaries and
corners of the layout patterns, not only the information is reserved
without redundancy but also the memory consumption is reduced.
An example of the point cloud representation of layout is shown
in Figure 2, where each layout feature is decomposed to discrete
points. In this paper, to stimulate future research, we present two
case studies corresponding to the two applications mentioned above,
i.e., the direct transformation and the indirect decomposition.

We organize this paper as follows. Section 2 reviews previous
deep learning techniques in EDA by topics. Section 3 introduces
previous deep learning based methods for point clouds and discusses
the challenges of point clouds in EDA applications. Section 4 and
Section 5 present the case studies of routing tree construction and
hotspot detection respectively. Finally, we conclude the paper in
Section 6.

2 Deep Learning in EDA
In this section, we briefly cover previous deep learning techniques

in EDA by topics, i.e., routing, placement, and lithography. In addi-
tion, we discuss the applications of Graph Neural Networks in EDA
in an independent subsection because graph is closely related to
point clouds as another widely-used irregular data representation.

2.1 Convolutional Neural Networks in EDA
Routability estimation in early stage has been demonstrated nec-

essary to enable fast design closure. RouteNet [16] builds up fully-
convolutional neural networks for both design rule violation count
prediction andDRChotspot prediction. An 18-layer ResNet is adopted
as the backbone structure that takes the input of a 3D tensor contain-
ing the information of pin density, macro region, RUDY and RUDY
pins. Recently, Liang et al. [17] take advantage of U-Net architec-
ture to predict routing congestion location with the image-based

placement information. There is also investigation of fully convo-
lution networks for routing congestion prediction based on global
placement results [18], which is demonstrated efficient on industrial
designs.

Besides the routability related tasks, deep learning has also shown
its power in clock-tree synthesis. GAN-CTS [19] introduces a multi-
branch regression model that predicts power, wire length and clock
skew. The framework also guides parameter settings of clock-tree
synthesis that results in better performance.

Modern placement engines carry out their jobs in an optimization
manner with heuristic fine-tuning [20–25]. Dealing with millions
of cells has made direct machine learning solutions challenging.
However, there are still attempts to bring deep learning tools into
the flow that can benefit the physical implementation stage [26].
Goldie et al. [27] propose a deep reinforcement learning solution
for floor planning. This work conducts macro block placement in a
sequential scheme, where each step is completed according to the
trained reinforcement learning policy. Graph neural network (GNN)
is employed for meta data embedding and a trained net composed
of multiple fully-connected layers is designed for reward prediction.
Recently, Liu et al. [28] embed explicit routability estimation into the
global placement flow by regularizing cell placement position with
a deep learning-based congestion estimator. In the global placement
runtime, the gradient of congestion with respect to cell positions is
backpropagated together with density and wirelength gradients.

Lithography hotspot detection and mask optimization are the
earliest EDA tasks that benefit from the fast development of deep
learning techniques. A major reason is the image nature of layout
designs. Neural network architectures [29–34], training algorithms
[14, 31, 35], and layout representations [14, 36, 37] are deeply studied.

Shin et al. [34] and Yang et al. [29] are the two pioneers employing
deep neural networks for hotspot detection with image-based layout
representation. Moreover, Yang et al. [14] investigate the frequency
domain layout representation that makes the framework be storage-
efficient. To apply the advanced hotspot detection technology on full
chip layout, Chen et al. [15] design a new faster region-based hotspot
detection framework. Furthermore, Geng et al. [31] leverage the
deep layout metric learning model to learn the representative layout
feature embeddings seamlessly combining with hotspot detection
tasks. Other architecture studies include binary neural networks
[30] and ResNet [36]. Additionally, hotspot detection-aware training
algorithms are developed, including label penalty [14] and AUC
optimization [35].

Recently, deep neural networks have been successfully applied
into the mask optimization problem [32, 33, 38, 39]. GAN-OPC [32]
tries to fit conditional GAN for mask image generation, where GAN
generated mask images are better initialization for legacy OPC en-
gine leading to faster convergence and better final mask quality.
DAMO [33] builds up high performance DCGAN model for both
mask generation and lithography modeling. It outperforms a state-
of-the-art industrial tool in terms of the VIA layer mask quality.

2.2 Graph Neural Networks in EDA

As one of the most common and representative irregular data
structures in EDA, graph has been well-studied in the modern design
flow. Recently, many works have probed graph learning methods by
modeling the target objects as graphs. These target objects mainly
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Figure 3: Three major kinds of deep learning based methods for point cloud: (a) The original point cloud; (b) View-based
methods; (c) Volumetric-based methods; (d) Point-based methods;

include: 1) Netlist. A netlist can be easily transformed into an undi-
rected graph, where each cell corresponds to one node. Mirhoseini
et al. [7] model the netlist as the graph and uses deep reinforcement
learning (DRL) to pose placement, in which a GNN is adopted as
the backbone to extract the graph embedding and node embeddings.
Similarly, Wang et al. [11] obtain the graph embedding of the cor-
responding netlist by GNN, the embedding is further passed to the
DRL agent. Besides the application in DRL, the graph embedding
can be directly used in some downstream tasks such as classification
(timing model selection [10], test point insertion [5]), segmentation
(3D partition [8]), and regression (net parasitics and device param-
eters predictions [9]). 2) Layout. Graph sometimes can be also a
natural representation of layout. For example, the layout decompo-
sition problem can be translated into a variety of graph coloring
problem [40, 41]. Following this kind of transformation, Li et al. [12]
decompose the layout with the help of graph embedding, which is
used to select algorithm, construct library, and match graph.

3 Background of Point Clouds
Point cloud, as its name suggests, is the set of data points in space.

Each point in a point cloud contains its location information, for ex-
ample, a set of x,y and z coordinates if it is in a 3D space. The study of
point clouds becomes increasingly important mainly because of the
rapid development of 3D acquisition technologies. The emergence of
affordable and available sensors brings about various types of data,
in which point cloud is one of the most essential representations
since it directly preserves the original geometric information with-
out any discretization. Due to the increasing importance of point
clouds and the presence of massive data, a great number of works
[42, 43, 45, 50–57] are developed to explore the possibility of deep
learning on point clouds. In this section, we first introduce previous
deep learning based methods for point clouds, then we discuss chal-
lenges in EDA applications raised by some special characteristics of
point clouds and how these issues are addressed by previous works
and potential solutions.

3.1 Point Cloud Learning with Neural Networks
Guo et al. [58] categorize deep learning based methods for point

clouds into three major types: multi-view based methods, volumetric-
based methods, and point-based methods. We give a simple illustra-
tion of these three methods in Figure 3.

3.1.1 Multi-view based Methods.Multi-view based methods [51–54]
are designed for 3D point cloud. These methods first transform a
3D point cloud into multiple views through projection and extract
view-wise features. Finally, extracted features are fused together to

generate a cloud embedding. Among these works, the major discrep-
ancy locates in the fusion of multiple view-wise features, which is
also the key challenge. For example, MVCNN [51] uses a straightfor-
ward max-pooling operator to aggregate features; Yang et al. [53]
fuse these features based on a relation network, which includes
inter-relationships among regions and views. GVCNN [54] proposes
a hierarchical view-group-shape architecture to obtain the cloud
embedding from the view level, the group level, and the shape level.

3.1.2 Volumetric-based Methods. Volumetric-based methods also
use the idea of transformation to solve the irregularity of regular
data. Instead of views, these methods voxelize a point cloud into
regular grids, and then a conventional CNN is compatible with the
volumetric data for feature extraction. VoxNet [55], one of the pio-
neer works using volumetric data, uses a volumetric occupancy grid
representation and fed it into a 3D Convolutional Neural Network
(3D CNN).

3.1.3 Point-based Methods. Compared to view-based methods and
volumetric-based methods, which generate unavoidable informa-
tion loss, point-based methods skip any preprocess techniques such
as voxelization and projection and directly handle with raw point
clouds. Typical point-based methods usually include three proce-
dures to obtain the embedding: Sampling, Grouping and Encoding.
Sampling is to select a set of centroids from the original point cloud
to reduce the memory cost. Grouping is to select a set of neighbors
(also called agglomerates) for each centroid, which represents a lo-
cal information and works like the local region constrained by a
convolution kernel in the original convolution. Encoding is to en-
code the new centroid feature using the original one and the local
feature aggregated from the neighbors of the centroid. In Sampling
phase, widely used sample rules include Farthest Point Sampling (FPS)
[42, 44, 46, 50], random sampling [45], Poisson disk sampling [49, 59],
and VoxelGrid sampling [47, 60]. InGrouping phase, ball query group-
ing [43, 46, 59, 61] and k nearest neighbors (KNN) [45, 50, 62, 63] are
the two dominant methods. As for methods used in Encoding phase,
previous survey [58] lists three main types: MPL-based, convolution-
based, and graph-based methods.

MPL-based methods use Multi-Layer Perceptrons (MLPs) as the
backbone to extract hidden features. Among all these methods, Point-
Net [42] is the pioneering work which simply calculates point-wise
features independently, causing a loss of neighborhood informa-
tion. Following this way, many efforts have been made to further
increase its representation power. For example, PointNet++ [43], the
extension work of PointNet, captures neighborhood information
by a hierarchical model on the basis of MLP. Besides solely using



Table 1: Summary of existing point-based methods which follow a sampling-grouping-encoding scheme

Methods Sampling Grouping Encoding

MLP-based methods
PointNet [42] - - v ′

ic = σ (θcvi )
PointNet++ [43] FPS Ball query v ′

ic = maxj ∈Ei σ (θcvj )

Yang et al. [44] FPS/GSS - v ′
ic = σ (θcvi )

Convolution-based
methods

PointCNN [45] Random/FPS KNN v ′
i = Conv(X × θ (vi −vj ))

RS-Conv [46] FPS Ball query v ′
ic = σ ( 1

|Ei |
∑
j ∈Ei vi ×MLP(CONCAT(vi −vj ,vi ,vj ))),

Graph-based methods

ECC [47] VoxelGrid KNN v ′
ic =

1
|Ei |

∑
j ∈Ei F (vj ),

FoldingNet [48] Random KNN v ′
ic = θc ·maxj ∈Ei σ (vj ),

KCNet [49] Poisson disk KNN v ′
ic = maxj ∈Ei (θc ·vj ),

DGCNN [50] - KNN v ′
ic = maxj ∈Ei σ (θc · CONCAT(vi −vj ,vi )),

a MLP module, some works use attention technique to explore the
relational information, i.e., relations between neighbors and centroid
[44], and between local structures [64].

Convolution-based methods process the centroid along with the
neighborhood by a continuous [46, 65] or discrete [45, 66] convo-
lutional kernel, i.e., a weighted sum over a given subset related to
the centroid and the neighborhood. Among all convolution-based
methods, PointCNN [45] is the most representative one. It does not
use a symmetric function to keep the order invariance property. In-
stead, the relative coordinates are adopted to obtain a transformation
matrix X , which transforms the relative coordinates into a latent
canonical form and thus achieves the order invariance. Then the
transformed input is processed by a convolution operation.

Graph-based methods treat each point in the point cloud as the
vertex in the graph and connects each centroid with its selected
neighbors. In this way, the original point cloud is viewed and pro-
cessed as a graph, in which GNNs can be utilized. Similar with
GNNs, graph-based methods also develop two different directions
for feature learning: spatial domain and spectral domain. Methods
in spatial domain obtain point embeddings following a convolution
philosophy, i.e., recursively updating node features by aggregat-
ing information from neighbors repeatedly. The pioneer work [47]
simply updates node feature by calculating the average value of
all neighbor features processed by a filter-generating network F ,
e.g. MLP. Another work [48] designs an auto-encoder, in which the
graph-based encoder replaces the average term as a max-pooling
operation. Evolved from the static graph, DGCNN [50] proposes a
dynamic graph construction method that updates the neighbors after
each layer of the network. Methods in spectral domain implements
the Encoding from a spectra perspective. For example, RGCNN [67]
defines the convolution over graph by Chebyshev polynomial ap-
proximation and Wang et al. [68] update node features by standard
unparametrized Fourier kernels.

For a clear comparison, we list most state-of-the-art point-based
methods in Table 1. Some methods are not covered in the table since
they do not follow a typical sampling-grouping-encoding scheme.
The method shown in the table may only represent a part of the
method. For example, FoldingNet [48] described in Table 1 solely
stands for the encoder in the work.

3.2 Challenges in EDA Applications
Deep learning has attracted more and more attention in kinds of

domains. Without exception, deep learning also motivated a data-
driven approach to learning features on point clouds. However, it
is not an easy task to adopt deep learning on point clouds caused

by several intrinsic characteristics of point clouds. We summarize
these challenges as follows:

Order invariance. Given a point cloud, any permutation on the
order of points has no influence on the embedding and the final re-
sults. However, most standard neural network models such as Convo-
lutional neural network (CNN) and Recurrent neural network (RNN)
are sensitive to the order permutation. For example, the permutation
on the input sequence affects the inference of RNN inevitably. There-
fore, any operation regarding to the point clouds should be order
invariant. In the multi-view based methods and volumetric-based
methods, order invariance is kept obviously by transformation, i.e.,
projection and voxelization. Among various point-based methods,
most of them achieve order invariance by some symmetric functions
like max-pooling or summation. Some convolution-based methods
design a special trainable network to maintain the order invariance
such as PointCNN [45] described before.

Irregularity. It is straightforward to feed regular data represen-
tations, such as sequences, images, and videos, into a deep learning
model. In contrast, finding or designing a suitable network archi-
tecture for irregular data is non-trivial since it usually varies in size
and distributes in the non-Euclidean space. As introduced in Section
3.1, there are two adopted solutions to tackle the irregularity. Both
multi-view based methods and volumetric-based methods transform
the irregular point cloud into regular grid-like data such as image or
voxel. On the contrary, point-based methods directly work on points
and propose networks specifically for irregular data like GNNs.

Sparsity. In addition to the compatibility problem, the sparsity
nature of point clouds elicits the concern about the efficiency. That
is the concern about how to extract the high-density information
from a sparse point cloud, and how to process massive sparse data
under the computation resource and time constraints. The issue is
strikingly important especially for volumetric-based methods: these
methods usually require prohibitive memory and computation re-
sources for storing volumetric data considering that point clouds are
usually scattered in the space sparsely. Therefore, more advanced
and compact structures are needed to reduce the computational and
memory costs of these methods by exploiting the sparsity. OctNet
[56] proposes a set of unbalanced octrees and each leaf node stores
a pooled feature. These unbalanced octrees partition the space hier-
archically and are encoded by a bit string representation so that the
model focused on dense regions efficiently. The structure of octree
is encoded using a bit string representation, and the feature vector
of each voxel is indexed by simple arithmetic.
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Figure 4: Cloud embeddings for tree construction, where
point clouds are transformed into unified 2-D Euclidean
space.

Dimension. Apart from these natures that impede the applica-
tions in deep learning, there are also some additional challenges
particularly in EDA applications. One of the most crucial concerns
is about the dimension. Previous works usually handle 3D objects in
real-world while 2D scenario is the most principal one in the EDA
field. Figure 4 gives a demonstration from 2D point clouds for the
tree construction to their embeddings. Therefore, methods that are
flexible in dimension should receive more attention while others,
e.g. view-based methods, may not be appropriate for EDA problems.
Luckily, most point-based methods demonstrate strong adaptability
in dimension which can be applied in 2D point clouds directly or
through some simple dimensionality reduction transformation. For
example, a 3D ball query corresponds to a 2D circle query in most
EDA problems.

4 Case Study 1: Routing Tree Construction
In this section, we discuss the routing tree construction problem as

a case study, whose input can be formalized as a special point cloud
directly. The target of the routing tree is to minimize both wirelength
(WL) and pathlength (PL). Among all construction methods, PD-
II [69] and SALT [70] show the best performance in terms of the
trade-off between WL and PL. However, given a specific net, it is
still hard to say which one, PD-II or SALT, is better. Also, it is non-
trivial to select the parameter that is used to control the balance
between WL and PL (α in PD-II, ϵ in SALT). Although the routing
tree is constructed by a set of terminals, i.e., a 2-D point cloud. the
input terminals possess some special properties compared with a
general point cloud. We start from the analysis of these properties
and propose a deep learning-based model, TreeNet, to obtain the
cloud embedding specifically for the tree construction based on
these properties. The obtained cloud embedding is then used to help
select the best routing tree construction method and predict the best
parameter for the selected method.

4.1 Routing Tree
The input of the routing tree V = {v0,Vs } is composed of the

source (v0) and the set of sinks (Vs ). Constructed fromV , the routing
tree T = {V ′, E ′} is a spanning/Steiner tree with v0 as the root. A
Steiner tree inserts additional points during the construction, i.e.,
V ′ ⊇ V , and the newly inserted points are called Steiner points. The
objective of the routing tree is to minimize both WL and PL. The WL
metric is called the lightness or normalized WL, which is computed
by the WL ratio with that of minimum spanning tree (MST), i.e.,

liдhtness =
w(T )

w(MST (G))
, wherew(·) is the total weight and G is the

connected weighted routing graph. The PL metric is controversial
and there are two widely used metrics. The first one is called the
shallowness [70], which is computed by the maximal PL ratio with
the shortest-path tree (SPT) among all vertices, i.e., shallowness =

max{
dT (v0,v)

dG (v0,v)
|v ∈ Vs }. The second one is called the normalized

path length [69], which is computed by the total PL normalized by

the total shortest-path distance, i.e., normPL =

∑
v ∈V dT (r ,v)∑
v ∈V dG (r ,v)

. Note

that d(·) mentioned above denotes as the Manhattan distance.

4.2 Property Analysis
Although we can use previous methods to obtain the cloud em-

bedding directly, the previous ones may be detrimental to the repre-
sentation power of final obtained embedding, especially for those
point clouds which own some special properties. The point clouds
for the routing tree construction are one of those special point clouds.
These properties followed by corresponding analysis are described
as follows:

1) Sampling. Unlike traditional point cloud which may have thou-
sands of points to represent a surface of one entity, the size of the
point cloud for the tree construction is usually small (e.g., up to 60).
Also, every point for the tree construction is indispensable as the
node in the corresponding tree. Therefore, the widely-used down-
sampling tricks such as random sampling and farthest point sam-
pling are not applicable for our application. However, the routing
tree based on the point cloud after down-sampling (see Figure 3(d)) is
totally different from the one before down-sampling (see Figure 3(c)).

2) Root. Given a point cloud for the tree construction, there is
a critical point called the root, corresponding to the source in the
constructed routing tree. Previous methods treat all points equally,
which may be a problem. Let’s consider a pair of point clouds for
the tree construction shown in Figure 5, whose point locations are
totally the same and only the root is assigned differently. In this case,
a typical method may regard the two point clouds as similar pair
while they actually represent completely different trees.

3)Grouping methods. The dominant grouping methods in previous
works are mainly KNN and ball query. However, both grouping
methods fail to capture the structure of the routing tree in some
cases such as the example shown in Figure 6. On the contrary, the
graph Gbbox (see Figure 6(c)) whose nodes are connected with their
bbox-neighbors shows an exact match with the routing tree (a subset
relation). Here, we call the nodeuj as the bbox-neighbor ofui if there
is no other node in the smallest bounding box containing uj and ui .
Actually, it is not difficult to show that a minimum spanning tree is
always the subgraph of Gbbox .

4.3 Routing Tree Construction based on Point
Cloud Embedding

Based on all properties discussed above, we first develop a spe-
cialized convolution-like operation, TreeConv, to obtain the cloud
embedding. TreeConv follows a classical procedure with previous
methods to generate the embedding, i.e., Sampling, Grouping and
Encoding. Differently, each phase is specifically designed consider-
ing those special properties mentioned above. In summary, we 1)
discard any kind of down-sampling; 2) design a grouping rule based
on Gbbox ; 3) utilize the critical root information in Encoding phase.
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Figure 5: Examples of the routing trees with the same node
distribution but different root (highlighted by red).

(a) ball (b) k-nn (c) k-bbox (d) routing
tree

Figure 6: Comparison among (a) ball query, (b) k-nn, and (c)
k-bbox groupingmethods (k = 2 in this example). The orange
regions represent the query ball in (a) and bounding boxes in
(c). The centroid is highlighted by red and the root is by green.

4) obtain the cloud embedding by two permutation-invariant opera-
tions, i.e., max pooling and average pooling. 5) use a root-sensitive
normalization. After we obtain the cloud embedding by the stack of
TreeConv, we can cast the algorithm selection and the parameter
prediction problem into classification and regression problems re-
spectively, and solve them by cloud embedding directly. For more
detais, we refer readers to [71] for a comprehensive understanding
of the whole workflow.

We compare TreeNet with other state-of-the-art models [42, 43,
45, 50] for the algorithm selection task. The result for the algorithm
selection is shown in Table 2, where “Recall∗” is the fraction of
the total amount of positive instances that were also predicted as
positive with the confidence larger than the bar b. Thus, the value
in “Recall∗” directly indicates the effectiveness of corresponding
method. We compare four state-of-the-art models with our TreeNet
and three variations: 1) Remove the root-sensitive normalization and
use the original normalization; 2) Remove the root-related global
information in Encoding phase; 3) Use k-nn grouping method instead
of k-bbox.

We have the following observations: (1) Our TreeNet outperforms
other state-of-the-art models on all three metrics. DGCNN [50] is
the closest one with similar accuracy and precision. However, the
low recall results in a terrible efficiency loss and makes it far inferior
to TreeNet. This makes sense since DGCNN use the same sampling
strategy and similar encoding method, which also demonstrates the
correctness of our analysis on the sampling and encoding phases. (2)
Our original TreeNet is the best among all variations. All variations
harm the model performance, which validates our analysis based on
the properties of the point cloud for the tree construction.

Table 2: Algorithm selection results

Method Accuracy Precision Recall∗
PointNet [42] 54.13 53.95 1.91
PointNet++ [43] 81.31 82.50 2.65
PointCNN [45] 62.18 64.24 1.16
DGCNN [50] 92.24 94.62 11.84
TreeNet w.o. Nor 87.22 88.62 15.69
TreeNet w.o. global 92.40 94.63 25.53
TreeNet w. knn 92.58 94.79 26.76
TreeNet 94.09 95.38 50.74

5 Case Study 2: Hotspot Detection
In learning based EDA methodologies, feature representation has

always been a significant concept. Recently, there are various studies
demonstrating that advanced feature representation could lead to
superior performance, as well as efficiency improvement [72, 73].
In this section, we explore the possibility of hotspot detection with
point cloud embedding.

5.1 Point Cloud Based Layout Representation
Our transformation workflow from layout representation to point

cloud can be summarized as follows: (1) Extraction: Coordinates for
describing the patterns are extracted according to the designs. Here
we extract vertexes from polygons as points. A point l is represented
by the coordinate x,y and z. (2) Augmentation: Points are discretized
into an evenly spaced grid in the x-y plane, a set of pillars P are
created. The points in each pillar are augmented with xc ,yc , zc , xp ,
and yp , where the c subscript denotes the distance to the arithmetic
center of all points in the pillar and the p subscript denotes the
distance between points and pillar center. From the perspective of
feature representation, using pillars as the descriptor to represent
the patterns is equivalent to images and much more efficient.

5.2 Point Cloud Hotspot Detection Model
In this work, we extend the point-based feature extractor based on

PointNet++ [43] to build up a two-stage point-based hotspot detector,
which directly generate hotspot box proposals and detection results
from raw point clouds.

Our proposed point-based hotspot detection framework is illus-
trated in Figure 7. For detecting hotspots from irregular points, the
detector consists of the hotspot box proposal generation stage and
the bounding box refinement stage. In this part, we will discuss each
stage in detail.

1 Hotspot box proposal generation: To fully utilize point-wise
features from the point cloud, PointNet++ [43] with multi-scale
grouping is applied to serve as the backbone of our model. As the
extension of PointNet [42], PointNet++ applies PointNet recursively
on a nested portioning of input point cloud. The Farthest Points
Sampling (FPS) algorithm is used to select centroids, and ball query is
used to extract local features from a small neighborhood thus further
grouping into larger units to produce higher level features. Equipped
with the point-wise features encoded by the PointNet++ backbone,
we add one segmentation head for predicting foreground points
information and one box regression head for generating hotspot
proposals. After the point segmentation and regression, we design
point-based hotspot non-maximum suppression strategy to remove
the redundant hotspot proposals. The algorithm which based on the
oriented IoU from bird-eye-view is similar to the h-NMS strategy in
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Figure 7: Overall flow of point cloud hotspot detection model.

Table 3: Comparison with State-of-the-art Hotspot Detectors

Bench Faster R-CNN [74] TCAD’19 [14] TCAD’20 [15] PCloud-HSD
Accu (%) FA Time (s) Accu (%) FA Time (s) Accu (%) FA Time (s) Accu (%) FA Time (s)

Case2 1.8 3 1.0 77.78 48 60.0 93.02 17 2.0 83.1 36 1.6
Case3 57.1 74 11.0 91.20 263 265.0 94.5 34 10.0 88.4 89 8.2
Case4 6.9 69 8.0 100 511 428.0 100 201 6.0 100 294 5.5
Average 21.9 48.7 6.67 89.66 274 251 95.8 84 6 90.5 139.6 5.1
Ratio 0.23 0.58 1.11 0.94 3.26 41.83 1 1 1 0.95 1.66 0.85

[15]. We use 0.80 for IoU threshold and after hotspot non-maximum
suppression we keep the top 200 hotspot proposals for the next
refinement stage.

2 Hotspot box refinement: After the first stage, we get a rough
segmentation results and hotspot box proposals, thenwe combine the
local spatial features and their global semantic information through
concatenation and several fully-connected layers. The aggregated
embedding is further used to refine hotspot proposals and predict
confidence for each proposal. We adopt the regression loss for the
proposal refinement, where a ground-truth box is assigned to the
hotspot proposals for learning box refinement.

5.3 Preliminary Results
We implement our point-based hotspot detection framework with

Pytorch [75], and test it on a platformwith an Nvidia GTX Titan GPU.
Our point-based hotspot detection model is evaluated on ICCAD
CAD Contest 2016 Benchmarks [76], which contains four designs
that are shrunk to match EUV metal layer design rules. Ground
truth hotspot locations are label according to the results of industrial
7nm metal layer EUV lithography simulation under a given process
window. As mentioned in Section 5.1, before fed into our model, the
GDSII format layout will be transferred into point based datasets.
The hotspot ground-truth label will be transformed to the ground-
truth bounding box for detection. For each point-cloud scene in
the training set, we subsample 32,768 points from each scene as the
inputs, which came from 2560× 2560nm2 layout. For scenes with the
number of points fewer than 32,768, we randomly repeat the points
to obtain 32,768 points. Four feature propagation layers are then
used to obtain the per-point feature vectors for segmentation and
proposal generation. For the box proposal refinement sub-network,
we randomly sample 512 points from the pooled region of each
proposal as the input of the refinement sub-network.

The preliminary results of our point-based hotspot detector are
detailed listed in Table 3. We use three benchmarks from [76] which
are listed in column “Bench”. Columns “Accu”, “FA”, “Time” stand
for accuracy, false alarm count and runtime respectively. Column
“TCAD’19” shows the results of [14], and columns “Faster R-CNN”

and “TCAD’20” come from [15]. Column “PCloud-HSD” is our pro-
posed point cloud based hotspot detector. The results demonstrate
that our framework can save 15% runtime comparing with the state-
of-the-art [15].

6 Conclusion
In this paper, we discussed possible applications of point clouds

in EDA fields. We first introduced deep learning techniques used in
EDA, followed by the backgrounds of point clouds including some
challenges of point cloud applications and previous deep learning
methods for point clouds. Two case studies on routing tree con-
struction and hotspot detection were covered and demonstrated the
promise of point clouds in the EDA domain. However, we only con-
sider the two cases as prompts for an open thread of point clouds in
EDA. Since this is the first systematic survey applying point cloud
learning into EDA, we expect to see a lot of researches as point
clouds may be adopted in many design stages of the design flow.
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