Faulty Function Extraction for Defective Circuits

Chris Nigh*, Ruben Purdy*, Wei Li*, Subhasish Mitra®, R.D. Blanton*
*Electrical and Computer Engineering Department
Carnegie Mellon University, Pittsburgh, Pennsylvania
TDepartment of Electrical Engineering and Department of Computer Science
Stanford University, Stanford, California

Abstract—It is well-known that understanding the behavior of
silicon failures is an essential step in yield learning. It is also
becoming more important for producing high-quality silicon due
to the increasing number of defects detected fortuitously. In order
to meet this need, a new approach for extracting the precise faulty
function from defective logic circuits is described. The approach
is applied to nearly a 1,000 14nm failures and one use case of
the results on improving ATPG is discussed.

I. INTRODUCTION

Silent data corruption (SDC) has and continues to receive
a great deal of attention from the research community [1]-[3]
and even the popular press [4]. In particular, the work in [1],
[2] clearly demonstrates that SDCs are the result of hardware
defects in the logic circuits that escaped manufacturing test.
Obviously, an escaped defect is due to its behavior deviating
from what is predicted by the models and metrics utilized for
test generation. For example, in Section IV, it is shown that
chip fails detected using tests based on the stuck-at and cell-
aware fault models exhibit exact stuck-at and cell-aware defect
behavior only 0.6% and 4.3% of the time, respectively. This
means, of course, that a significant proportion of defective ICs
are detected fortuitously.

Fortuitous detection is nothing new; the test community has
long understood that most defects are fortuitously detected. For
example, N-detect [5] and other test metrics [6], [7] do not
attempt to model defects but instead attempt to increase the
likelihood of fortuitous detection. The amount of fortuitous
detection has changed dramatically over the years however.
Table I reports the percentage of defects detected by stuck-
at tests that exhibit stuck-at behavior extracted from several
papers published between 1990 and 2022 [8]. This all implies
that the semiconductor industry is relying more and more
on fortuitous detection to establish the ever-increasing chip
quality levels demanded by a world increasingly dominated
by electronic systems.

It may be the case that our reliance on fortuitous detection
has run its course and that is now time to examine the
phenomenon in a precise, data-driven manner. That is, we
believe it is imperative to understand precisely the misbehavior
caused by defects in actual failing ICs in order to measure
quantitatively the deviation they exhibit with respect to the
fault models and test metrics deployed for test generation.
Why? A significant gap between models/metrics and actual
defect behavior intuitively increases the likelihood of defect
escape and the SDC phenomenon experienced by super-silicon
system owners such as Google, Meta and others.

Node (nm) Stuck-at Fails (%) Data source

15000 79.8 1990, Bell-Northern Research, [10]
130 36.9 2001, IBM, [11]

90 20.0 2008, NXP, [12]

14 0.6 2022, GLOBALFOUNDRIES, [8]

TABLE I: Percentage of defects that exhibit stuck-at behavior.

At first thought, EDA-based diagnosis comes to mind as
an ideal approach for precisely understanding logic circuit
failures. Diagnosis is insufficient however; while diagnosis
is extremely adequate for localization it generally has not
been developed to precisely derive the misbehavior caused by
defects. We therefore propose a methodology based on the
Pseudo-Exhaustive Physically-Aware Region (PEPR) testing
metric [8]. PEPR is an ideal choice because it is a parameteri-
zable approach that assumes that the influence of a defect can
be bounded by a region in the design that has both physical
(i.e., layout) and logical components. We develop an approach
to identify the region that contains the defect, then characterize
the misbehavior of the circuit region caused by the defect,
where behavior consists of not only function but timing and
state as well. In this work, we focus solely on circuit function
however.

There is one other work we are aware of whose goal is
the precise characterization of faulty functionality due to the
presence of a defect. Specifically, in [9], a function describing
the impact of a defect on circuit behavior is derived based on
faulty nets and the signals that influence those nets. The most
significant difference between that work and what is proposed
here is that [9] assumes that only a single net can be erroneous
during any given test. For PEPR, any number of nets within
the parameterized region are allowed to be simultaneously
erroneous.

In the remaining sections of this paper, we describe our
methodology for deriving faulty functionality, and its applica-
tion to fail data from a large population of failing ICs. Specifi-
cally, in Section II, what is meant by faulty function extraction
is described followed by details on the approach developed
for identifying/deriving the precise changes in circuit function
due to a defect in Section III. Also in Section III, we describe
the iterative approach for identifying the minimal region that
bounds a defect in a failing logic circuit. Application of the
approach is described in Section IV, where we specifically
apply our methodology to nearly 1,000 failures from test chips
fabricated in 14nm technology. Furthermore, we demonstrate

how the extracted faulty functions are used to inform a data-
driven approach for PEPR-based ATPG. Finally, in Section V,
we summarize our contributions and discuss on-going and
future work.

II. FAULTY FUNCTION DEFINITION

As alluded to earlier, the objective of diagnosis is local-
ization and defect attribution. That is, diagnosis answers the
questions, what is the x-y-z location of the failure and what
is its nature, i.e., open, bridge, cell-internal, etc.? The goal
of diagnosis however is not precise faulty function extraction,
evidenced by the fact that there are typically scores provided
with the diagnostic outcomes that measure the deviation from
what was observed on the tester and predicted by model(s)
employed by the diagnosis algorithm.

Our goal instead is to identify the precise change in circuit
function due to a defect. One way of course is to check if
defective circuit function matches a defect model (e.g., stuck-
at, cell-aware, etc.). This is accomplished simply by fault
simulating known fault models using the circuit test set, and
comparing the bit-level errors to those observed on the tester
which is, in essence, what almost all diagnosis algorithms
perform. As we demonstrate later however, very few failing
circuits behave as conventional fault models. As a result and
as already mentioned, we utilize the PEPR test metric because
it assumes the behavior of a region of the circuit can arbitrarily
change and the size of the region is parameterizable.

A. Pseudo-Exhaustive Physically-Aware Region Testing

The Pseudo-Exhaustive Physically-Aware Region (PEPR)
testing metric [8] rasterizes a logic circuit into overlapping
regions each of which consist of a physical (layout) part, and
an optional logical part. PEPR requires that the subcircuit
in each region be exhaustively tested to ensure that it is
functioning correctly. Associated with the physical portion of
a region are three parameters x, y, and L which represent
the width, length and the number of layers that defines the
dimensions of the cuboid derived from the design layout.
There are also three other parameters s;, s, and sp that
represent the step-size for layout rasterization along the three
dimensions. Parameters s, and s, define the step size in units
of measure (e.g., nanometers) while s; defines step size in
the z direction in terms of the number of layers. Rasterization
begins in one corner of the design layout and steps in the z,
y, and z directions, one dimension at a time, until the entire
design is analyzed.

The subcircuit corresponding to a layout cuboid can be aug-
mented with m levels of logic added to the inputs of the circuit
and/or n levels of logic added to the outputs of the circuit.
Adding logic to the circuit inputs is meaningful in cases where
defect activation may depend on the precise voltages driving
the circuit inputs which can slightly vary depending on the
number and characteristics of the active cell transistors in the
added logic. Logic added to the circuit outputs is justified for
situations where a defect creates intermediate voltages near
the transistor threshold values of driven cells. Intermediate

sy=0.1

Fig. 1: PEPR region and circuit derivation.

Fl FZ F3 F255
00 |00 |01 |10 11| : | 11
01 /00 | 00|00 |00 : | 11
10 |00 |00 | 00 |00 | : | 11
1111 |11 |11 [11| : | 00

Fig. 2: The faulty functions for a region circuit withp = g = 2.

voltages may have to pass through several levels of logic
before they have resolved to a logic zero or one where they can
then be reliably propagated. Figure 1 illustrates layout region
extraction, circuit identification, and circuit augmentation with
additional logic.

Assuming a region and its corresponding circuit bounds
the impact of a defect within the logic circuit under test, our
objective is to identify the faulty function of the region circuit.
For a circuit with p inputs and ¢ outputs, there are 2P x 29
possible functions, one of which is the intended function while
the remaining are the possible faulty functions that PEPR
assumes a defect can cause. Figure 2 illustrates these concepts
for an example region circuit.

B. The Input Pattern Fault Model

To identify the faulty function of a region circuit, the circuit
input pattern (IP) faults [13] are fault simulated for comparison
with tester data. An IP fault ip — o/0’, where ip is one of
the possible 2P set of input values, o is the correct output
circuit response corresponding to ip, and o' # o is one of
the possible 29 — 1 set of erroneous output values produced
when ip is applied to a faulty circuit. By fault simulating all
possible 2P x (29 —1) IP faults and comparing their simulation
responses to the tester data, the faulty function, if it exists, can
be derived.

If none of the (2P x 29) — 1 possible faulty functions have a
fault-simulation response that exactly matches what has been
observed on the tester, then no faulty function exists for the
circuit region. There are several reasons why this may happen,
specifically:

o The region does not bound the defect. That is, the defect

affects more of the logic circuit under test than the sub-
circuit corresponding to the region. In Section III, we

describe the approach deployed to identify the region that
bounds the defect which in theory must exist, if the defect
obeys the assumptions that it only affects functionality
(i.e., no impact on timing, no additional state, etc.).

« Because it is not possible to know whether a defective
logic circuit satisfies the aforementioned assumptions, it
is therefore possible that a faulty function simply cannot
be derived because it does not exist.

o The user-defined fault model (UDFM) capability [14] is
used to perform the IP fault analysis described above.
The UDFM capability however allows only one net to
be erroneous which means that the number of possible
erroneous responses for a given circuit input pattern ip
is ¢ instead of (29 — 1). Thus, any faulty function that
causes two or more circuit outputs to be erroneous cannot
be modeled using a set of user-defined faults. Later in
Section III-C an approach to somewhat overcome the
limited capability of UDFMs is described.

III. FAULTY FUNCTION EXTRACTION

Faulty function extraction for a failing logic circuit requires
(1) identification of a specific circuit region, and (ii) derivation
of a logical description of the changed functionality of the
subcircuit contained in the region. Given the large number
of possible faulty functions, it quickly becomes apparent that
an efficient analysis approach is required for faulty function
extraction. This section describes the use of diagnosis for
initial defect localization, the deployment of fault models and
test metrics for faulty function extraction, a dictionary-based
implementation that reduces fault simulation, and a parameter
search for region identification.

A. Defect Localization

The first step in identifying a faulty function is to find the
potential circuit regions that bound the defect. It is assumed
that there is only a single defect that affects the logic circuit
under test. However, a situation can be imagined where a
single identified region bounds multiple defects, or multiple
identified regions collectively bound all existing defects. Di-
agnosis is a proven method for localizing a defect with high
confidence [15]. In this work, layout-aware diagnosis is used to
locate potential defect site(s) in the design layout, offering an
excellent starting point for bounding a defect. Also, limiting
analyses of failures labeled by diagnosis as a single defect
with an associated single candidate ensures correctness of
faulty function extraction, and reduces computational effort.
While commercial diagnosis offerings are capable of handling
multiple defects, there is significant complexity and a reduced
confidence in the reported “callout” especially when defect
sites interact.

B. Fault Models and Test Metrics

Successful faulty function extraction for a failing logic
circuit results in a logical model of the functionality change
for a circuit region that, when simulated, produces a response
that exactly matches the tester response. While this is proposed

as an a posteriori analysis applied to existing logic circuit
fails, similar logical models are regularly postulated a priori
in the form of fault models, like stuck-at, cell-aware, or bridge.
For example, a given stuck-at fault identifies a signal line
as a region, and uses a constant-1 or -0 faulty function for
the region; a given cell-aware fault identifies a cell instance
as a region, and uses a circuit model of the cell with some
internal defect like a bridge or a transistor open to obtain a
faulty function; a given bridge fault model typically identifies
two signal lines as a circuit region, and assumes some faulty
functionality when the two signals have opposite logic values.

Fault models are intended to represent a specific defect with
a corresponding faulty function. If the impact of a defect is
accurately captured by a fault model, then the errors (i.e.,
incorrect primary and scan outputs) observed via the tester
exactly match the errors predicted by fault simulation. If there
is any mismatch, the faulty function assumed/defined by the
fault model is obviously not the same as that caused by the
defect which means detection is fortuitous which inherently
implies that other defects with similar behavior outside of the
fault model may not be detected and thus escape.

In contrast to fault models, test metrics, such as gate-
exhaustive [16], N-detect [5], physically-aware N-detect [17],
and PEPR [8], are developed to measure test quality [15]. Test
metrics typically assume a wide range in faulty functionality,
making them more comprehensive (and also more costly) than
a fault model that may target the same circuit regions. For
example, cell-aware assumes faulty functions that correspond
to certain circuit perturbations of the cell while gate exhaustive
assumes any faulty function is equally possible. Test metrics
typically prioritize identification of the circuit region that
contains the defect rather than a specific faulty function
which implies the region should be tested exhaustively (gate-
exhaustive, PEPR) or multiple times (/N-detect, physically-
aware [N-detect). Because there is not a single faulty function
to compare against, test metrics must be evaluated differently
than fault models.

As an example, consider the physically-aware N-detect
test metric [17], used to measure the proportion of stuck-at
faults that have been detected /N times under unique physical
neighborhood states. This metric does not assume a particular
faulty function, but rather claims that the activation of a defect
that affects a single net may be dependent on the values of
the physical neighborhood, and thus it is beneficial to detect
a stuck-at fault for varying neighborhood states. Similarly,
gate-exhaustive and PEPR identify a logical and physical
circuit region, respectively, that should be exhaustively tested.
Psuedo-exhaustive test metrics assume that any input pattern
applied to the circuit region may produce a faulty response.
Without an assumed faulty function, a simple comparison of
errors observed in simulation and errors observed on the tester
is not applicable.

To allow for the uncertainty associated with test metrics, the
concept of consistency introduced in [9] is utilized. In essence,
a test metric is consistent if the the circuit region is capable
of producing a faulty function that exactly matches the errors

observed on the tester. If a test metric is inconsistent, then
there is some assumption made by the metric that does not
hold. For example, as discussed in Section II, PEPR can be
inconsistent if the region does not, for instance, bound the
defect.

Consider the concept of consistency applied to IP faults.
Consistency is defined with respect to what is observed on the
tester. Specifically, an IP fault ip — o/0’ is consistent if one
of the following is true:

o For each t; that detects ip — o0/0’, the corresponding
fault simulation response must exactly match the errors
observed on the tester, OR

« For each t; that detects ip — o/0', there are no errors
observed on the tester.

Circuit regions that have a consistent set of IP faults has
a corresponding faulty function; regions that do not, do not
bound the defect.

C. Dictionary Analysis

Input pattern faults associated with region subcircuits can be
fault simulated directly using UDFMs if the number of faulty
outputs is limited one as described in Section II. However,
performing fault simulation to obtain the precise response
produced at the primary and secondary (scan) outputs is
significantly more computationally expensive than pass-fail
simulation. For example, in our experiments, pass-fail fault
simulation is 3500X faster than obtaining the detailed fault
simulation response.

In order to improve efficiency, a dictionary-based IP
fault analysis is developed. An IP fault (vovi...vp—1) —
(0j=v)/(0;=0") for a region subcircuit with p inputs and ¢
outputs that faults a single output o; is detected by a test if
(i) the values (vovy ...v,—1) are applied to the p inputs, and
(ii) the output o; is sensitized to some observable point (i.e.,
a primary or secondary output). Two dictionaries are created
to evaluate these two detection requirements. The first is a
signal dictionary that contains the logic values for the inputs
of all region circuits of interest for the test set of the logic
circuit under test. The second is a stuck-at fault dictionary that
contains a single bit indicating the detection status of stuck-at
faults located at region circuit outputs.

The two dictionaries are constructed for signals and faults
associated with region circuits believed to bound defects for a
population of failing logic circuits. Querying both dictionaries
for a region circuit’s IP faults enables the identification of a
set of consistent IP faults (if they exist) and its corresponding
faulty function.

In general, current commercial offerings of fault simulation
do not allow multiple signals to be faulty simultaneously. This
limitation, as described in Section II, prevents the analysis
of all possible faulty functions. One approach to mitigate
this limitation is to union the fault simulation responses of
individual faulty signals to approximate errors stemming from
IP faults that have more than one faulty output. This approach
is not guaranteed to overcome the shortcoming however, if
errors from multiple faulty outputs interact constructively or

destructively. Were the capability for multiple faulty signal
simulation available, faulty function extraction success would
improve.

D. Minimal Region Identification

Extracting a faulty function caused by defect within a logic
circuit under test first requires the identification of a region
that bounds the defect. The layout bounding boxes reported
by layout-aware diagnosis are used as starting points. That is,
regions with the parameters described in Section II are overlaid
on these locations to ensure they are covered in a manner
consistent with the deployment of PEPR for ATPG purposes.
The region layout (z, y and L) and logic (m and n) parameters
are systematically searched to identify minimal values that lead
to a faulty function that produces a fault simulation response
that exactly matches errors observed on the tester, if possible.

IV. EXPERIMENTS

Faulty function extraction is performed on fail data from
a 18.7M gate test chip fabricated in 14nm technology. The
design has a total of 136.6M stuck-at faults and a 3-detect
test set that achieves 98.3% coverage. We have fail data for
over 30,000 fail logs but focus, as described in Section III-A,
only on the 989 single-defect, single-candidate fail logs for
one of the twelve cores in the chip. Particularly, we determine
how many of these failures have a faulty function precisely
predicted by a given fault model or test metric. In addition,
we analyze the correlation that exists between (i) PEPR region
parameters that successfully lead to faulty function extraction,
and (ii) properties of the design and wafer location.

A. Models and Metrics Evaluation

The stuck-at and cell-aware fault models are evaluated as
described in Section III-B. That is, stuck-at and cell-aware
faults corresponding to locations reported by diagnosis are
simulated, and the corresponding response compared to the
data observed on the tester. An exact match between the
simulation response and the tester data indicates the model
has correctly predicted the exact faulty function. For the 989
fail logs examined, only 0.6% and 4.3%' have faulty functions
that match stuck-at or cell-aware behavior.

The IP faults for gates and PEPR regions with x=y=5, L=3
and m=n=0 corresponding to locations reported by diagnosis
are analyzed for consistency. The percentage of the 989 fail
logs that have faulty functions successfully extracted is 5.5%
and 43.3% for the gate-exhaustive and PEPR test metrics,
respectively. PEPR, with these parameter settings, is able to
successfully explain 10X more failures than the stuck-at and
cell-aware fault models.

I'This percentage is an upper bound because until recently we did not have
the capability to obtain the fault simulation response of a cell-aware fault;
this value will be updated if the manuscript is accepted.

100
90
80
70 :
60 ¥

80 ————
40 —
30
20
x=y 1 2 3 4 5 6 7 8 9 10

——1-0-0 195 350 354 360 362 378 382 386 39.1 40.0
ca-1-1-1 61.0 904 928 933 94.0 940 940 941 941 942
-4—1-2-2 689 951 953 957 965 966 966 973 973 973
—+—2-0-0 37.0 40.1 406 412 417 434 437 448 456 485
cwe2-1-1 946 946 946 946 946 948 948 949 0949 949
—4—=2-2-2 965 965 966 96.8 96.8 969 969 97.7 97.7 977
——3-0-0 37.7 409 414 419 426 441 448 46.7 481 534
cw-3-1-1 046 946 946 946 946 948 948 949 949 0949
—-4+-3-2-2 965 965 966 968 96.8 969 969 97.7 977 97.7

L-m-n Physical region size

Success rate (%)

Fig. 3: Faulty function extraction success as a function of
PEPR parameters x, y, L, m and n.

B. PEPR Parameter Exploration

The PEPR parameters used in Section IV-A are arbitrar-
ily chosen. This means that some of the 43.3% of faulty
functions extracted, while accurate, may be for regions that
are unnecessarily large with respect to bounding the defect.
For the remaining fail logs, there could be other region
parameters for which a faulty function does indeed exist. The
unique parametrization properties of the PEPR test metric
enables search for a region that leads to successful faulty
function extraction. In this context, faulty function extraction
is attempted for regions where the parameters are swept from
1X to 10X the minimum layout feature size for x and y, 1 to
3 for the number of layers L, and O to 2 for m and n, the
additional levels of logic added to the inputs and outputs of
the corresponding region circuit, respectively. The outcomes
of this analysis is presented in Figure 3.

A key takeaway from Figure 3 is that adding even one logic
level to the inputs and outputs (i.e., m=n=1) to a region
circuit significantly increases the success of faulty function
extraction. Also, while the largest parameters {z=y=10; L=3;
m=n=2} leads to successful faulty function extraction for
97.7% of failures, much smaller regions ({x=y=2; L=2;
m=n=1}) are very successful at 94.6%. Finally, we are
further investigating the 23 failures that did not have a faulty
function successfully extracted. Specifically, questions being
considered include: Will a larger region lead to success? Are
these failures sequence- or timing-dependent? Is diagnosis
incorrect leading to regions that have zero chance of bounding
the defect?

C. Region to Layout-Process Correlation

Additionally, an analysis is performed to identify how
regions that lead to the successful extraction of faulty function
correlate with process and design characteristics. For the
correlation analysis, the physical region width and length are

-2.00

- 175

- 150

i
=
o
w
=n

- 100

o o
w ~
o w
Average m

0.25

0.00

1 11 21 31 41 51 61

Fig. 4: Wafer map detailing average added logic levels m = n
required for faulty function identification. (Gray locations did
not provide any failures for analysis.)

set to x=y=10, the number of region layers is set to L=3, and
the number of added levels of logic is varied from m=n=0
to m=n=2. For the process-based analysis, m and n are
correlated with wafer lots and X —Y die coordinates.

From the available data, there are five lots that have more
than 100 failures, details are given in Table I1.2 The five
lots are tested at different points in time as denoted by the
Week column. The average number of required additional logic
levels trends upward, suggesting that the number of defects
that are voltage dependent may be increasing over time.

Week No. of failures Avg. m=n
Lot A X 196 0.41
LotB X+l 135 045
Lot C X+4 162 0.44
LotD X+5 198 0.49
LotE X+20 199 0.50

TABLE II: Lot-based details for average logic levels added for
successful faulty function extraction.

The wafer map in Figure 4 shows the spatial behavior for
the average number of additional levels of logic required to
successfully extract the faulty function. One observation is that
regions with defects that are less reliant on added logic levels
can be identified, for example, the upper-right and bottom
edge.

To understand the relationship between the faulty func-
tion identification and design features, a similar analysis is
performed based on the diagnosis-reported layout layer, with
results reported in Figure 5. From this analysis, we observe
that the cell layout layer generally requires more added logic
levels than the metal layers, with an average value closer to
one. This and other design-specific information information
can be used to fine-tune ATPG, redistributing test effort from

2The failure data available for analysis is not necessarily all the failure data
from these lots.

areas that have smaller regions to others with larger regions.
From these results, adding one logic level to region circuits
extracted from the cell layout layer is justified, while no
additional logic is justified for the metal layers.

o
o
|

n
o
n

o
S
|

Average m
o
w

™ “
2

é\?/

N
N N
<& <@ X8 <&

é\e’

Layout layer

Fig. 5: Comparison of average additional logic levels as a
function of layout layer reported by diagnosis.

V. CONCLUSIONS

A method for extracting the faulty function for a defective
logic circuit has been described and demonstrated. The ap-
proach uses the PEPR test metric to bound the impact of the
defect both physically (i.e., at the layout level) and logically,
and a dictionary-based IP fault analysis to determine changes
in functionality due to the defect. Experiments involving actual
failure data collected from a 14nm test chip reveal that there
is a huge gap between what is predicted by conventional
fault models and what is observed on the tester. Importantly,
however, extraction of the exact faulty function is successful
nearly 98% of the time for the 989 fail logs analyzed.

Our current work is investigating several applications for
extracted faulty functions. Some examples include:

« PEPR ATPG: A powerful feature of PEPR is the capabil-
ity to change the parameters of the regions and the corre-
sponding subcircuits targeted for pseudo-exhaustive test.
Faulty function extraction for a statistically-significant
level of failures could be used to inform what parameter
values are required to ensure future defects are detected
deterministically and not fortuitously. This, of course, as-
sumes faulty function extraction is performed on defects
that are representative of those that will occur in the
future.

« Defect Characterization: Faulty function extraction pro-
vides both the circuit and change in circuit functionality
caused by a defect. Detailed defects can therefore be
postulated and simulated (at the transistor level or lower)
to determine if it leads to the extracted faulty function.

o Faulty Function Prediction: Faulty function extraction
applied to a large population of failures produces signif-
icant data pairs, each of which consists of a circuit and

its associated faulty function. It may be possible to learn
a model that takes in as input circuit characteristics and
outputs the faulty function. Such a model implies that
PEPR ATPG could be relaxed from pseudo-exhaustive to
faulty function specific.

VI. ACKNOWLEDGEMENTS

We would like to thank John Carulli and Rohan Deshpande
of Globalfoundries for detailed discussions regarding the de-
sign, test and diagnosis of their 14 nm test chip.

[1]
[2]
[3]

[4]
[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

H. D. Dixit et al., “Silent Data Corruptions at Scale,” CoRR, 2021.
——, “Detecting Silent Data Corruptions in the Wild,” 2022.

P. H. Hochschild et al., “Cores That Don’t Count,” in Workshop on Hot
Topics in Operating Systems. Association for Computing Machinery,
2021.

J. Markoff, “Tiny Chips, Big Headaches,” The New York Times, Feb
2022.

S. Ma, P. Franco, and E. McCluskey, “An Experimental Chip to
Evaluate Test Techniques Experiment Results,” in /EEE International
Test Conference, 1995, pp. 663-672.

J. Dworak et al., “Enhanced DO-RE-ME Based Defect Level Prediction
Using Defect Site Aggregation - MPG-D,” in IEEE International Test
Conference, 2000, pp. 930-939.

Y.-T. Lin et al., “Physically-Aware N-Detect Test Pattern Selection,” in
Design, Automation and Test in Europe, 2008, pp. 634-639.

W. Li et al., “PEPR: Pseudo-Exhaustive Physically-Aware Region Test-
ing,” in IEEE International Test Conference, 2022, pp. 314-323.

R. Desineni and R. Blanton, “Diagnosis of Arbitrary Defects using
Neighborhood Function Extraction,” in IEEE VLSI Test Symposium,
2005, pp. 366-373.

A. Pancholy, J. Rajski, and L. McNaughton, “Empirical Failure Analysis
and Validation of Fault Models in CMOS VLSI,” in IEEE International
Test Conference, 1990, pp. 938-947.

T. Bartenstein et al., “Diagnosing Combinational Logic Designs using
the Single Location At-a-Time (SLAT) Paradigm,” in IEEE International
Test Conference, 2001, pp. 287-296.

S. Eichenberger et al., “Towards a World Without Test Escapes: The Use
of Volume Diagnosis to Improve Test Quality,” in IEEE International
Test Conference, 2008, pp. 1-10.

R. D. Blanton and J. P. Hayes, “Properties of the Input Pattern Fault
Model,” International Conference on Computer Design, pp. 372-380,
1997.

Tessent Scan and ATPG User’s Manual, Siemens EDA Software, 2023,
Software Version 2023.2.

Y.-T. Lin and R. D. Blanton, “METER: Measuring Test Effectiveness
Regionally,” Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 7, pp. 1058-1071, 2011.

K. Y. Cho, S. Mitra, and E. J. McCluskey, “Gate Exhaustive Testing,”
in IEEE International Test Conference, Nov 2005, pp. 1-7.

J. Nelson et al., “Multiple-Detect ATPG based on Physical Neighbor-
hoods,” in ACM/IEEE Design Automation Conference, 2006, pp. 1099—
1102.

