
DGR: Differentiable Global Router

Abstract
Modern VLSI design flows necessitate fast and high-quality global
routers. In this paper, we introduce DGR, a GPU-accelerated, dif-
ferentiable global router capable of concurrent optimization for
millions of nets, which we aim to open-source. Our innovation lies
in the development of a routing Directed Acyclic Graph (DAG) for-
est to represent the 2D pattern routing space for all nets, enabling
coordinated selection of Steiner trees and 2-pin routing paths from
a global perspective. For efficient search within the DAG forest,
we relax the discrete search space to be continuous and develop
a differentiable solver accelerated by deep learning toolkits on
GPUs. Experimental results demonstrate that DGR substantially
mitigates routing overflow while concurrently reducing total wire-
lengths from 0.95% to 4.08% in congested testcases compared to
state-of-the-art academic global routers. Additionally, DGR exhibits
favorable scalability in both runtime and memory with respect to
the number of nets.

1 Introduction
The continuously shrinking technology node has led to a notable
increase in the density and scale of VLSI circuits, posing substan-
tial challenges for routing algorithms. To manage this complexity,
VLSI routing has been divided into two sub-problems: global rout-
ing, which focuses on generating coarse-grain routing guides, and
detailed routing, where routing tracks are assigned for all connec-
tions guided by these routing guides while ensuring compliance
with design rule constraints. The outcome of global routing plays
a pivotal role in shaping the efficiency of detailed routing and the
overall quality of post-route circuits. Additionally, the efficiency of
global routing is crucial, as it contributes to streamlining timing-
and congestion-driven floor-planing and placement by providing
accurate interconnect information [1]. Thus, modern VLSI design
workflows require fast and high-quality global routing algorithms.

A Directed Acyclic Graph (DAG)-based global router called
CUGR2 is proposed in [2] and achieves state-of-the-art results in the
academic community. Figure 1 depicts the construction of a routing
DAG, which serves as the data structure for representing available
pattern routing paths for a net. Initially, a rectilinear Steiner mini-
mum tree (RSMT) [3] connects all pins, breaking the multi-pin net
into 2-pin sub-nets (Figure 1b). Subsequently, routing paths con-
forming to available patterns are established for each 2-pin sub-net.
The final routing DAG (depicted in Figure 1c) comprises vertices
representing pins, Steiner points, or turning points, and edges rep-
resenting interconnect wire segments within routing paths. CUGR2
optimizes one net at a time, employing a dynamic programming-
based algorithm to determine the best pattern routing paths and
layer assignments. However, CUGR2 does not guarantee optimal so-
lution among all nets because of its sequential heuristic. Moreover,
its sequential heuristic falls short in addressing routing congestion
from a global perspective, possibly leading to unnecessary iter-
ations of rip-up and reroutes. Combinatorial optimization-based
techniques [4, 5] could help concurrent optimize multiple nets. But
they are often too slow for modern VLSI circuits.

In this work, we propose a novel Differentiable Global Router,
named DGR, to enable concurrent optimization of millions of nets.
It involves the creation of a routing DAG forest (depicted in Fig-
ure 2 (a)) to concisely represent the 2D pattern routing space for all

Physical pin

(a) Original Net

Steiner point

(b) Generated
routing tree

(c) A rout-
ing DAG by
CUGR2

(d) A routing
DAG by DGR

Figure 1: An example from a multi-pin net (a) to routing
DAGs (c or d). (b) is the rectilinear Steiner minimum tree
(RSMT) by FLUTE. Edges in a CUGR2 DAG represent inter-
connect wire segments, whereas edges in a DGR DAG sym-
bolize potential 2D routing paths for 2-pin sub-nets.

Net 1

Net n

Net N

?
?

?

?

?

?

…

…

?
?

?
?

?

?

?

?

(a)

Net 1

Net n

Net N

52%

48%

81%

19%

57%

43%

…

…

8%

92%

72%

28%

32%

68%

44%

56%

(b)

Net 1

Net n

Net N

93%

7%

85%

15%

97%

3%

…

…

1%

99%

99%

1%

1%

99%

100%

0%

(c)

Net 1

Net n

Net N

…

…

(d)

Figure 2: Differentiable search in a DAG forest. (a) Optimal se-
lection of routing tree topologies and 2-pin routing paths are
initially unknown. (b) Continuous relaxation of the search
space by placing a probability on each routing tree topology
candidate and each 2-pin path candidate. (c) Optimization of
the probabilities in a differentiable manner. (d) Inducing the
final routing trees from the optimized probabilities.

nets. It is an abstraction, adaption and extension of the DAG concept
in [2]. Here, a single net may be associated with multiple routing
DAGs, with each DAG signifying a distinct routing tree topology
candidate for that net. Within each routing DAG, individual edges
symbolize potential 2D routing path candidates for 2-pin sub-nets.
With a DAG forest, the 2D global routing problem is formulated
as selecting a routing DAG for each net, followed by choosing one
2-pin path for each 2-pin sub-net within the DAG, such that the
total wire length, via count and overflow are minimized. To enable
scalable and effective search within the DAG forest, we relax the
discrete search space to be continuous and develop an end-to-end
differentiable solver (as shown in Figure 2) accelerated by deep
learning toolkits on GPUs. Additionally, we introduce a Gumbel-
Softmax technique with temperature annealing and top-p selection
to bridge the gap between the continuous search space and discrete
routing solutions. We summarize our contributions as follows:

• We propose a GPU-accelerated differentiable global routing
framework, named DGR, designed for concurrent optimiza-
tion for millions of nets. To our best knowledge, it is the
first GPU-accelerated concurrent global router.

• We propose establishing a routing DAG forest to represent
the search space encompassing routing tree topologies and
2-pin routing paths for all nets in a given layout. This facil-
itates the coordinated selection of Steiner trees and routing
paths for all nets from a global perspective.

• We propose a differentiable algorithm for scalable and effi-
cient search within the DAG forest. Gumbel-Softmax tech-
nique with temperature annealing and top-p selection are
introduced to further enhance the solution quality.

• Experimental results demonstrate DGR can be easily scaled
to solve a million-level benchmark, and outperforms the
state-of-the-art academic global routers.

2 Prior Works
Global routing approaches can be categorized into twomajor groups:
concurrent [5–7] and sequential [8? –12], based on whether they
handle one or multiple nets simultaneously. Sequential methods
often utilize a “rip-up and reroute" framework [1]. They commence
with an initial routing solution and then iteratively improve it, ad-
dressing one net at a time. In each iteration, a net that traverses
a congested area is removed (rip-up) and subsequently rerouted
to bypass the congested regions. The sequencing of net routing
plays a vital role in determining the ultimate routing quality. And
sequential approaches can stagnate on local minima due to their
refinement heuristics. On the other hand, concurrent approaches
try to handle multiple nets simultaneously. They are generally
based on combinatorial optimization techniques, such as multi-
commodity flow [4] and integer linear programming [5–7]. While
concurrent techniques have demonstrated their ability to yield supe-
rior routing outcomes, particularly in challenging routing scenarios,
they often exhibit noticeably slower computational speeds in con-
trast to sequential methodologies. Recently, GPU-accelerated global
routing [10–12] has garnered considerable attention, achieving ap-
proximately a tenfold increase in speed while maintaining routing
quality. However, the majority of these approaches rely on “par-
allelizing" traditional sequential algorithms in GPUs. While these
methods significantly enhance runtime, the quality of the routing
result is still limited by the traditional sequential-based algorithms.
Our work falls within the realm of concurrent approaches, yet it not
only tries to deliver superior performance but also good scalability
comparable to sequential methods by effectively harnessing the
massive parallelism offered by GPUs in a distinct novel way.

Another categorization of global routing is based on the dimen-
sionality of routing: 2D [5–8] and 3D [2, 9–12]. In 2D global routing,
routing is confined to the horizontal and vertical directions, neces-
sitating a subsequent assignment of routing layers for each wire.
Conversely, 3D global routing spans all three spatial dimensions,
determining wire layers within the routing process. In theory, 3D
routing offers the potential for superior solutions by enabling more
efficient utilization of 3D routing resources. However, in practice,
2D approaches often achieve comparable quality results with sig-
nificantly shorter runtime. Thus, our work adopts the 2D approach.

3 Formulation of Pattern Routing Based on
DAG Forests

3.1 Routing DAG Forest
A routing DAG forest is a mathematical structure to systematically
describe the 2D pattern routing space for all the nets. A single net
may be associated with multiple routing DAGs, with each DAG
signifying a distinct routing topology for that net. In each routing
DAG, vertices denote pins and Steiner points, and edges represent
potential 2D routing paths for two-pin sub-nets within the specified
routing topology. These paths can take various forms, including
L-/Z-/C-shape pattern routing, monotonic routing, or even maze
routing. The realization of a 2D pattern routing solution entails the
selection of a routing DAG for each net, followed by finding one
routing path for each 2-pin sub-net within the DAG, as shown in
Figure 2 (d). In contrast to CUGR2 [2], which addresses one net at a
time and focuses on a single Steiner tree topology in each instance,
our routing DAG forest allows multiple DAGs for each net and
facilitates the coordination of DAG and DAG edge selection across
all nets in a global view.

The construction of the DAG forest has a direct impact on the
runtime and quality of DGR outcome. Section 4.2 will illustrate how
we construct the DAG forest in this work. As a future direction, we
plan to explore the adaptive expansion of the forest by introduc-
ing new DAGs and DAG edges for nets in congested areas when
necessary.

3.2 Formulation of Pattern Routing
Thiswork focuses on 2D pattern routing. The dynamic programming-
based layer assignment and maze routing-based refinement pre-
sented in [2] are applied to our pattern routing outcome to gen-
erate the final 3D routing solution. Given a routing DAG forest
constructed by techniques in Section 4.2, the objective of 2D rout-
ing is to select the best routing DAGs (routing trees) and DAG edges
(2-pin paths) for all the nets such that the total wire length, number
of vias, and routing overflow are minimized. Before delving into
the problem formulation, we need to define some terminology:

Let N be the set of input nets. the first task is to construct a
routing DAG forest F = {T ,S,P}, where T is the routing tree
candidate pool, S is the set of 2-pin sub-nets in all routing trees,
and P represents 2-pin path candidate pool. Let 𝑖 ∈ P be a specific
2-pin path candidate, then subnet(𝑖) ∈ S denotes the corresponding
2-pin sub-net of 𝑖 , tree(𝑖) ∈ T denotes the corresponding routing
tree of 𝑖 , and 𝑥𝑖 ∈ {0, 1} is the binary indicator about whether 𝑖 is
selected, i.e., 𝑥𝑖 = 1 if and only if 𝑖 is selected after global routing.
Let 𝑗 ∈ T be a specific routing tree candidate, then net(𝑗) ∈ N
denotes the corresponding net of 𝑗 , and 𝑦 𝑗 ∈ {0, 1} is the binary
indicator about whether 𝑗 is selected, i.e., 𝑦 𝑗 = 1 if and only if 𝑗 is
selected after global routing.

Let E be the set of all g-cell edges, and 𝑒 ∈ E be a specific g-cell
edge. The capacity of 𝑒 , denoted as 𝑐𝑎𝑝𝑒 , can be formulated as:

𝑐𝑎𝑝𝑒 = track𝑒 − 𝛽𝑣pin_density𝑣 − local_net𝑒 (1)

Where:

• track𝑒 is the the number of available tracks in 𝑒 .
• pin_density𝑣 is the number of pins in the g-cell 𝑣 which

is connected to 𝑒 in the g-cell graph.
• 𝛽𝑣 is a weight from CUGR2, based on the minimal edge

length and defined in the LEF file and physical length of
edges connecting 𝑣 .

DGR: Differentiable Global Router

• local_net𝑣 denotes the number of local nets at 𝑣 , i.e., nets
only occupying 𝑣 .

In the capacity formula, the second part (𝛽𝑣pin_density𝑣) and the
third part (local_net𝑒) are used to estimate the influence of pin
connections and local nets, which are essential for final detailed
routing quality.

The demand of 𝑒 , 𝑑𝑒 , is given by:

𝑑𝑒 =
∑︁
𝑖∈P𝑒

𝑦tree(𝑖)𝑥𝑖 + 𝛽𝑣
©«
∑︁
𝑘∈P𝑣

𝑦tree(𝑘)𝑥𝑘
ª®¬ (2)

Where:
• P𝑒 is the set of 2-pin path candidates passing through 𝑒 .
• P𝑣 is the set of 2-pin path candidates with a turning point

at 𝑣 .
• 𝛽𝑣 is a weight following the same definition as above.

The demand calculation comprises two parts: the first part models
the influence of the wires that go through the edge, and the second
part represents the influence of vias.

Given the above definitions, the DAG forest-based 2D pattern
routing problem can be mathematically formulated as follows:

min
𝑖∈P, 𝑗∈T

𝑎1 × WL_cost + 𝑎2 × via_cost

+ 𝑎3 × overflow_cost (3)

s.t. WL_cost =
∑︁
𝑖∈P

𝑦tree(𝑖)𝑥𝑖WL𝑖 , (4)

via_cost =
√
𝐿
∑︁
𝑖∈P

𝑦tree(𝑖)𝑥𝑖TP𝑖 , (5)

overflow_cost =
∑︁
𝑒∈E

𝑓 (𝑐𝑎𝑝𝑒 − 𝑑𝑒), (6)∑︁
𝑖:subnet(𝑖)=𝑠

𝑥𝑖 = 1,∀𝑠 ∈ S, (7)∑︁
𝑗 :net(𝑗)=𝑛

𝑦 𝑗 = 1,∀𝑛 ∈ N , (8)

where 𝑎1, 𝑎2 and 𝑎3 are the weights for wire length cost, via cost,
and overflow cost, respectively. WL𝑖 is the wire length of the 2-pin
path candidate 𝑖 , and TP𝑖 is the number of turning points of 𝑖 . 𝐿
is the number of routable layers. 𝑓 (∗) represents some non-linear
function to be applied to the resource (capacity - demand) of g-cell
edges, e.g., the ReLU function used in [13] and logistic function
used in [2, 9]. Equation (7) ensures the selection of a single path for
each 2-pin sub-net. Similarly, Equation (8) guarantees the selection
of a single routing tree for each net.

4 Differentiable Global Router

4.1 DGRWorkflow
Figure 3 depicts the DGR workflow. Initially, we construct a DAG
forest, encompassing routing tree candidates and 2-pin path can-
didates for each 2-pin sub-net within the trees. Every candidate is
associated with a “selection" probability and the expctation of the
costs defined in Equation (3) to Equation (6) are derived based on
these probabilities. Subsequently, the selection probabilities are up-
dated through back-propagation of the costs. This iterative process
continues until the iteration limit is reached. The 2D pattern routing
solution is then obtained by selecting routing tree and 2-pin path
candidates according to the optimized probabilities. This solution
further undergoes dynamic programming-based layer assignment

DGR framework

Post-process

Training

Input

Objective calculation

End?

DAG Forest Initialization

Initialize candidate
probabilities

DP-based layer assignment

Initialization

Maze routing

LEF/DEF

Routing Tree

Update probability by
gradient descent

w. Deep Learning Toolkit !ow

Backpropagate

Yes

No

Routing Tree construction

FLUTE

top-p samplingCandidates selection

Guidance to detail router

L-shape

Revised Tree by CUGR2

Figure 3: The workflow of DGR.

and maze routing-based refinement, as detailed in [2], to ultimately
generate the final 3D global routing solution.

4.2 Routing DAG Forest Construction
The routing DAG forest comprises routing tree candidates for each
net, with each of these tree candidates spawning a collection of
2-pin path candidates. An example of the constructed DAG forest
is provided in Figure 4. Initially, multiple routing tree candidates
are formulated for each net using FLUTE and its fine-tuned version
by CUGR2, which moves Steiner points based on congestion. It’s
worth noting that this is not restricted to just these two techniques;
alternative routing tree generation algorithms, such as SALT [14]
and TreeNet [15], can seamlessly integrate their resulting trees as
additional candidates. Subsequently, every routing tree is used to
segment the multi-pin net into 2-pin segments based on its tree
topology. Then, all L-shape pattern paths are enumerated for each 2-
pin sub-net and incorporated into the pool as 2-pin path candidates.
In the final step, each candidate will be associated with a probability,
which is initialized randomly.

4.3 Continuous Relaxation and Cost
Calculation

We relax the categorical choice of candidates (𝑥𝑖 , 𝑦 𝑗) to selection
probabilities. Formally, we define 𝑝𝑖 ∈ [0, 1] as the probability of
selecting 2-pin path candidate 𝑖 , and 𝑞 𝑗 ∈ [0, 1] as the probabil-
ity of selecting the routing tree topology candidate 𝑗 . Then, the
expectation of the costs in Section 3.2 can be calculated as:

overflow_cost =
∑︁
𝑒∈E

𝑓 (𝑐𝑎𝑝𝑒 − 𝑑𝑒) (9)

i.e., 𝑑𝑒 =
∑︁
𝑖∈P𝑒

𝑞tree(𝑖)𝑝𝑖 + 𝛽𝑣 (
∑︁
𝑘∈P𝑣

𝑞tree(𝑘)𝑝𝑘) (10)

wirelength_cost =
∑︁
𝑖∈P

𝑞tree(𝑖)𝑝𝑖WL𝑖 (11)

via_cost =
√
𝐿
∑︁
𝑖∈P

𝑞tree(𝑖)𝑝𝑖TP𝑖 (12)

The total cost is a weighted sum of overflow cost, wirelength
cost, and via cost. In our experiments, we adopt the metric weights
from the ICCAD’19 contest: cost = 500 × overflow_cost + 4 ×
via_cost + 0.5 × wirelength_cost. Figure 4 illustrates the work-
flow to compute the cost.

Input Nets

Routing
Tree

Candidates

Gumbel softmax
for 2-pin path

Gumbel softmax
for routing tree

 2-pin path candidates 2-pin path candidates 2-pin path candidates

… …

…

…

X X X X X X X

3500

0

2600

1

2600

1

Wirelength Via countTrainable variable

<latexit sha1_base64="PT7z+wMNq1C/1GpwDJjBAD+AMEo=">AAAB7nicjVDJSgNBEK2JW4xb1KOXxiB4CjPihqeAF48RzALJMPR0apImPT1jd48ShnyEFw+KePV7vPk3dpaDioIPCh7vVVFVL0wF18Z1P5zCwuLS8kpxtbS2vrG5Vd7eaeokUwwbLBGJaodUo+ASG4Ybge1UIY1Dga1weDnxW3eoNE/kjRml6Me0L3nEGTVWat0H+W3gjYNyxau6U5C/SQXmqAfl924vYVmM0jBBte54bmr8nCrDmcBxqZtpTCkb0j52LJU0Ru3n03PH5MAqPRIlypY0ZKp+nchprPUoDm1nTM1A//Qm4m9eJzPRuZ9zmWYGJZstijJBTEImv5MeV8iMGFlCmeL2VsIGVFFmbEKl/4XQPKp6p9WT6+NK7WIeRxH2YB8OwYMzqMEV1KEBDIbwAE/w7KTOo/PivM5aC858Zhe+wXn7BF3mj5Q=</latexit>

wq1

<latexit sha1_base64="YQkmbY1Kq5Il/lk4JwuZZUNRiDk=">AAAB7nicjVDJSgNBEK1xjXGLevTSGARPYSa44SngxWMEs0AyDD2dmqRJT8/Y3aOEIR/hxYMiXv0eb/6NneWgouCDgsd7VVTVC1PBtXHdD2dhcWl5ZbWwVlzf2NzaLu3sNnWSKYYNlohEtUOqUXCJDcONwHaqkMahwFY4vJz4rTtUmifyxoxS9GPalzzijBorte6D/DaojoNS2au4U5C/SRnmqAel924vYVmM0jBBte54bmr8nCrDmcBxsZtpTCkb0j52LJU0Ru3n03PH5NAqPRIlypY0ZKp+nchprPUoDm1nTM1A//Qm4m9eJzPRuZ9zmWYGJZstijJBTEImv5MeV8iMGFlCmeL2VsIGVFFmbELF/4XQrFa808rJ9XG5djGPowD7cABH4MEZ1OAK6tAABkN4gCd4dlLn0XlxXmetC858Zg++wXn7BF9rj5U=</latexit>

wq2

<latexit sha1_base64="PyaPkvxVhheiDkEI8eyWOH4qDsM=">AAAB7nicjVDJSgNBEK1xjXGLevTSGARPYcYdTwEvHiOYBZJh6On0JE16esbuGiUM+QgvHhTx6vd482/sLAcVBR8UPN6roqpemEph0HU/nLn5hcWl5cJKcXVtfWOztLXdMEmmGa+zRCa6FVLDpVC8jgIlb6Wa0ziUvBkOLsd+845rIxJ1g8OU+zHtKREJRtFKzfsgvw2ORkGp7FXcCcjfpAwz1ILSe6ebsCzmCpmkxrQ9N0U/pxoFk3xU7GSGp5QNaI+3LVU05sbPJ+eOyL5VuiRKtC2FZKJ+nchpbMwwDm1nTLFvfnpj8TevnWF07udCpRlyxaaLokwSTMj4d9IVmjOUQ0so08LeSlifasrQJlT8XwiNw4p3Wjm5Pi5XL2ZxFGAX9uAAPDiDKlxBDerAYAAP8ATPTuo8Oi/O67R1zpnN7MA3OG+fYPCPlg==</latexit>

wq3<latexit sha1_base64="yu8Myx9DxSzJSupJZxKBdo5ARaQ=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiTiC1cFNy4r2Ae0IUymk3boZDLMTJQS8hFuXCji1u9x5984bbPQ1gMXDufcy733hJIzbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk5SRWiLJDxR3RBrypmgLcMMp12pKI5DTjvh+Hbqdx6p0iwRD2YiqR/joWARI9hYqfMUZDLw8qBac+vuDGiZeAWpQYFmUP3qDxKSxlQYwrHWPc+Vxs+wMoxwmlf6qaYSkzEe0p6lAsdU+9ns3BydWGWAokTZEgbN1N8TGY61nsSh7YyxGelFbyr+5/VSE137GRMyNVSQ+aIo5cgkaPo7GjBFieETSzBRzN6KyAgrTIxNqGJD8BZfXibts7p3Wb+4P681boo4ynAEx3AKHlxBA+6gCS0gMIZneIU3RzovzrvzMW8tOcXMIfyB8/kDV/qPkA==</latexit>wp1

<latexit sha1_base64="JV7ruzhbpC71HQBOEhNqSyu915s=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9ktVsVTwYvHCvYD2mXJptk2NJsNSVYpS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZF0rOtHHdb6ewtr6xuVXcLu3s7u0flA+P2jpJFaEtkvBEdUOsKWeCtgwznHalojgOOe2E49uZ33mkSrNEPJiJpH6Mh4JFjGBjpc5TkMmgNg3KFbfqzoFWiZeTCuRoBuWv/iAhaUyFIRxr3fNcafwMK8MIp9NSP9VUYjLGQ9qzVOCYaj+bnztFZ1YZoChRtoRBc/X3RIZjrSdxaDtjbEZ62ZuJ/3m91ETXfsaETA0VZLEoSjkyCZr9jgZMUWL4xBJMFLO3IjLCChNjEyrZELzll1dJu1b1Lqv1+4tK4yaPowgncArn4MEVNOAOmtACAmN4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/WX+PkQ==</latexit>wp2

<latexit sha1_base64="vScOQkgMKwudjQH6e1ZPyxKkFOY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexqfOAp4MVjBPOAZFlmJ7PJkNnZYWZWCUs+wosHRbz6Pd78GyfJHjSxoKGo6qa7K5ScaeO6305hZXVtfaO4Wdra3tndK+8ftHSSKkKbJOGJ6oRYU84EbRpmOO1IRXEcctoOR7dTv/1IlWaJeDBjSf0YDwSLGMHGSu2nIJPB+SQoV9yqOwNaJl5OKpCjEZS/ev2EpDEVhnCsdddzpfEzrAwjnE5KvVRTickID2jXUoFjqv1sdu4EnVilj6JE2RIGzdTfExmOtR7Hoe2MsRnqRW8q/ud1UxNd+xkTMjVUkPmiKOXIJGj6O+ozRYnhY0swUczeisgQK0yMTahkQ/AWX14mrbOqd1m9uK9V6jd5HEU4gmM4BQ+uoA530IAmEBjBM7zCmyOdF+fd+Zi3Fpx85hD+wPn8AVsEj5I=</latexit>wp3

<latexit sha1_base64="zo0yoBJeIYYKvJSUx3R2P7WS7/o=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiTiC1cFNy4r2Ae0IUymk3boZDLMTJQS8hFuXCji1u9x5984bbPQ1gMXDufcy733hJIzbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk5SRWiLJDxR3RBrypmgLcMMp12pKI5DTjvh+Hbqdx6p0iwRD2YiqR/joWARI9hYqfMUZDLAeVCtuXV3BrRMvILUoEAzqH71BwlJYyoM4VjrnudK42dYGUY4zSv9VFOJyRgPac9SgWOq/Wx2bo5OrDJAUaJsCYNm6u+JDMdaT+LQdsbYjPSiNxX/83qpia79jAmZGirIfFGUcmQSNP0dDZiixPCJJZgoZm9FZIQVJsYmVLEheIsvL5P2Wd27rF/cn9caN0UcZTiCYzgFD66gAXfQhBYQGMMzvMKbI50X5935mLeWnGLmEP7A+fwBoOqPwA==</latexit>wpa

<latexit sha1_base64="F/c8w9wDd2C4nxd2faBhy9YT5kQ=">AAAB8nicbVDLSsNAFJ34rPVVdelmsAiCUBLxhauCG5cV7APSUCbTSTt0MhNmbpQS8hluXCji1q9x5984bbPQ1gMXDufcy733hIngBlz321laXlldWy9tlDe3tnd2K3v7LaNSTVmTKqF0JySGCS5ZEzgI1kk0I3EoWDsc3U789iPThiv5AOOEBTEZSB5xSsBK/lMvS3oZOfXyvFepujV3CrxIvIJUUYFGr/LV7SuaxkwCFcQY33MTCDKigVPB8nI3NSwhdEQGzLdUkpiZIJuenONjq/RxpLQtCXiq/p7ISGzMOA5tZ0xgaOa9ifif56cQXQcZl0kKTNLZoigVGBSe/I/7XDMKYmwJoZrbWzEdEk0o2JTKNgRv/uVF0jqreZe1i/vzav2miKOEDtEROkEeukJ1dIcaqIkoUugZvaI3B5wX5935mLUuOcXMAfoD5/MHRZ2RPA==</latexit>wpa+1

<latexit sha1_base64="x0w6gVseDceOwzPL9VjSYpiCCL4=">AAAB8HicbVDLSsNAFL3xWeur6tLNYBFclUR84argxmUF+5A2hMl00g6dmYSZiVJCvsKNC0Xc+jnu/BunbRbaeuDC4Zx7ufeeMOFMG9f9dpaWV1bX1ksb5c2t7Z3dyt5+S8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wdDPx249UaRbLezNOqC/wQLKIEWys9PAUZEmQhXkeVKpuzZ0CLRKvIFUo0AgqX71+TFJBpSEca9313MT4GVaGEU7zci/VNMFkhAe0a6nEgmo/mx6co2Or9FEUK1vSoKn6eyLDQuuxCG2nwGao572J+J/XTU105WdMJqmhkswWRSlHJkaT71GfKUoMH1uCiWL2VkSGWGFibEZlG4I3//IiaZ3WvIva+d1ZtX5dxFGCQziCE/DgEupwCw1oAgEBz/AKb45yXpx352PWuuQUMwfwB87nD2rfkM0=</latexit>wpb
<latexit sha1_base64="2yEuzFBG/qwiNfxQDbBF/wphya4=">AAAB8nicbVDLSsNAFJ34rPVVdelmsAiCUBLxhauCG5cV7APSUCbTSTt0MhNmbpQS8hluXCji1q9x5984bbPQ1gMXDufcy733hIngBlz321laXlldWy9tlDe3tnd2K3v7LaNSTVmTKqF0JySGCS5ZEzgI1kk0I3EoWDsc3U789iPThiv5AOOEBTEZSB5xSsBK/lMvS3pZeOrlea9SdWvuFHiReAWpogKNXuWr21c0jZkEKogxvucmEGREA6eC5eVualhC6IgMmG+pJDEzQTY9OcfHVunjSGlbEvBU/T2RkdiYcRzazpjA0Mx7E/E/z08hug4yLpMUmKSzRVEqMCg8+R/3uWYUxNgSQjW3t2I6JJpQsCmVbQje/MuLpHVW8y5rF/fn1fpNEUcJHaIjdII8dIXq6A41UBNRpNAzekVvDjgvzrvzMWtdcoqZA/QHzucPRyWRPQ==</latexit>wpb+1

3800

1

3800

1

4900

1

4900

1

<latexit sha1_base64="dDfL4V9jUy60n6RF75vXvX9bJkk=">AAAB7nicbVDLSgMxFL2pr1pfVZdugkUQhDIjvnBVcOOygn1AO5RMmmlDM5mQZIQy9CPcuFDErd/jzr8xbWehrQcuHM65l3vvCZXgxnreNyqsrK6tbxQ3S1vbO7t75f2DpklSTVmDJiLR7ZAYJrhkDcutYG2lGYlDwVrh6G7qt56YNjyRj3asWBCTgeQRp8Q6qaV6WXjmT3rlilf1ZsDLxM9JBXLUe+Wvbj+hacykpYIY0/E9ZYOMaMupYJNSNzVMEToiA9ZxVJKYmSCbnTvBJ07p4yjRrqTFM/X3REZiY8Zx6DpjYodm0ZuK/3md1EY3QcalSi2TdL4oSgW2CZ7+jvtcM2rF2BFCNXe3YjokmlDrEiq5EPzFl5dJ87zqX1UvHy4qtds8jiIcwTGcgg/XUIN7qEMDKIzgGV7hDSn0gt7Rx7y1gPKZQ/gD9PkD6IuPRw==</latexit>pb+1
<latexit sha1_base64="scSVFnJKU07lj/6H2qyJuJVzFYo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nELzwVvHisYGyhDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZRWVtfWN8qbla3tnd296v7Bo0kyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3U791hPXRiTqAccpD2I6UCISjKKV/LSXh5NetebW3RnIMvEKUoMCzV71q9tPWBZzhUxSYzqem2KQU42CST6pdDPDU8pGdMA7lioacxPks2Mn5MQqfRIl2pZCMlN/T+Q0NmYch7Yzpjg0i95U/M/rZBhdB7lQaYZcsfmiKJMEEzL9nPSF5gzl2BLKtLC3EjakmjK0+VRsCN7iy8vk8azuXdYv7s9rjZsijjIcwTGcggdX0IA7aIIPDAQ8wyu8Ocp5cd6dj3lrySlmDuEPnM8fD2KO1w==</latexit>pb

<latexit sha1_base64="Wg1Ix02nM3cYWsGw4IzTLqOlfXs=">AAAB7nicbVDLSgMxFL2pr1pfVZdugkUQhDIjvnBVcOOygn1AO5RMmmlDM5mQZIQy9CPcuFDErd/jzr8xbWehrQcuHM65l3vvCZXgxnreNyqsrK6tbxQ3S1vbO7t75f2DpklSTVmDJiLR7ZAYJrhkDcutYG2lGYlDwVrh6G7qt56YNjyRj3asWBCTgeQRp8Q6qaV6GTnzJ71yxat6M+Bl4uekAjnqvfJXt5/QNGbSUkGM6fieskFGtOVUsEmpmxqmCB2RAes4KknMTJDNzp3gE6f0cZRoV9Limfp7IiOxMeM4dJ0xsUOz6E3F/7xOaqObIONSpZZJOl8UpQLbBE9/x32uGbVi7AihmrtbMR0STah1CZVcCP7iy8ukeV71r6qXDxeV2m0eRxGO4BhOwYdrqME91KEBFEbwDK/whhR6Qe/oY95aQPnMIfwB+vwB5wSPRg==</latexit>pa+1
<latexit sha1_base64="kxNeu23U91IjTwHd+zZdnoZEYn4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nELzwVvHisYGyhDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZRWVtfWN8qbla3tnd296v7Bo0kyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3U791hPXRiTqAccpD2I6UCISjKKV/LSX00mvWnPr7gxkmXgFqUGBZq/61e0nLIu5QiapMR3PTTHIqUbBJJ9UupnhKWUjOuAdSxWNuQny2bETcmKVPokSbUshmam/J3IaGzOOQ9sZUxyaRW8q/ud1Moyug1yoNEOu2HxRlEmCCZl+TvpCc4ZybAllWthbCRtSTRnafCo2BG/x5WXyeFb3LusX9+e1xk0RRxmO4BhOwYMraMAdNMEHBgKe4RXeHOW8OO/Ox7y15BQzh/AHzucPDd2O1g==</latexit>pa

<latexit sha1_base64="oJbUNg81LqWD5H85Kqc0MT3UPK8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n8xlPBi8cKpi20oWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6m/rNJ1Sax/LRjBMMIjqQvM8ZNVbyk252PumWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNjp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PRvgozLJDUo2XxRPxXExGT6OelxhcyIsSWUKW5vJWxIFWXG5lOyIXiLLy+TxlnVu6pePlxUard5HEU4gmM4BQ+uoQb3UAcfGHB4hld4c6Tz4rw7H/PWgpPPHMIfOJ8/x+iOqA==</latexit>p3
<latexit sha1_base64="SffE3U0mTvTmv9Vmro0VUToAprI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKX3gqePFYwbSFNpTNdtsu3WzC7kQoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxMpDLrut1NYW9/Y3Cpul3Z29/YPyodHTROnmnGfxTLW7ZAaLoXiPgqUvJ1oTqNQ8lY4vpv5rSeujYjVI04SHkR0qMRAMIpW8pNeVpv2yhW36s5BVomXkwrkaPTKX91+zNKIK2SSGtPx3ASDjGoUTPJpqZsanlA2pkPesVTRiJsgmx87JWdW6ZNBrG0pJHP190RGI2MmUWg7I4ojs+zNxP+8ToqDmyATKkmRK7ZYNEglwZjMPid9oTlDObGEMi3srYSNqKYMbT4lG4K3/PIqadaq3lX18uGiUr/N4yjCCZzCOXhwDXW4hwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AcZjjqc=</latexit>p2

<latexit sha1_base64="tjjMvD1OBWnpPcV/kcdF+yLr3cc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nELzwVvHisYGyhDWWznbRLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWj26nfekKleSIfzDjFIKYDySPOqLGSn/Zyb9Kr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfHTshJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzETXQc5lmhmUbL4oygQxCZl+TvpcITNibAllittbCRtSRZmx+VRsCN7iy8vk8azuXdYv7s9rjZsijjIcwTGcggdX0IA7aIIPDDg8wyu8OdJ5cd6dj3lrySlmDuEPnM8fxN6Opg==</latexit>p1

<latexit sha1_base64="+oJtsIcjJN2D+BOkTz/Zt5DW22U=">AAAB7HicjVBNS8NAEJ3Ur1q/qh69LBbBU0nEqngqePFYwbSFNpTNdtIu3Wzi7kYoob/BiwdFvPqDvPlv3H4cVBR8MPB4b4aZeWEquDau++EUlpZXVteK66WNza3tnfLuXlMnmWLos0Qkqh1SjYJL9A03AtupQhqHAlvh6Grqt+5RaZ7IWzNOMYjpQPKIM2qs5N/1cm/SK1e8qjsD+ZtUYIFGr/ze7Scsi1EaJqjWHc9NTZBTZTgTOCl1M40pZSM6wI6lksaog3x27IQcWaVPokTZkobM1K8TOY21Hseh7YypGeqf3lT8zetkJroIci7TzKBk80VRJohJyPRz0ucKmRFjSyhT3N5K2JAqyozNp/S/EJonVe+sWrs5rdQvF3EU4QAO4Rg8OIc6XEMDfGDA4QGe4NmRzqPz4rzOWwvOYmYfvsF5+wTKy46q</latexit>

q1
<latexit sha1_base64="jw9jyrQcws1RDn2jEX/r4BVjKj0=">AAAB7HicjVDLSgNBEOyNrxhfUY9eBoPgKewGX3gKePEYwU0CyRJmJ7PJkNnZdaZXCEu+wYsHRbz6Qd78GyePg4qCBQ1FVTfdXWEqhUHX/XAKS8srq2vF9dLG5tb2Tnl3r2mSTDPus0Qmuh1Sw6VQ3EeBkrdTzWkcSt4KR1dTv3XPtRGJusVxyoOYDpSIBKNoJf+ul9cmvXLFq7ozkL9JBRZo9Mrv3X7CspgrZJIa0/HcFIOcahRM8kmpmxmeUjaiA96xVNGYmyCfHTshR1bpkyjRthSSmfp1IqexMeM4tJ0xxaH56U3F37xOhtFFkAuVZsgVmy+KMkkwIdPPSV9ozlCOLaFMC3srYUOqKUObT+l/ITRrVe+senpzUqlfLuIowgEcwjF4cA51uIYG+MBAwAM8wbOjnEfnxXmdtxacxcw+fIPz9gnMUI6r</latexit>

q2
<latexit sha1_base64="0Yhg8/WPzy1m9Z2h6Pj/Y6P/Nk8=">AAAB7HicjVDLSgNBEOyNrxhfUY9eBoPgKez6xlPAi8cIbhJIljA76U2GzM6uM7NCWPINXjwo4tUP8ubfOHkcVBQsaCiquunuClPBtXHdD6ewsLi0vFJcLa2tb2xulbd3GjrJFEOfJSJRrZBqFFyib7gR2EoV0jgU2AyHVxO/eY9K80TemlGKQUz7kkecUWMl/66bH4+75YpXdacgf5MKzFHvlt87vYRlMUrDBNW67bmpCXKqDGcCx6VOpjGlbEj72LZU0hh1kE+PHZMDq/RIlChb0pCp+nUip7HWozi0nTE1A/3Tm4i/ee3MRBdBzmWaGZRstijKBDEJmXxOelwhM2JkCWWK21sJG1BFmbH5lP4XQuOo6p1VT29OKrXLeRxF2IN9OAQPzqEG11AHHxhweIAneHak8+i8OK+z1oIzn9mFb3DePgHN1Y6s</latexit>

q3

Sum

demand
matrix

1 1 1 1
1
1

2
2

2
2

0
2

1 1 1 1
2
2

1
1

1
2

1
1

1
1

2
2

2
2

1
1

1
1 2

1
2
1

2
1

2
0

1
2

1
1

1
1

1
1

1
1

1
1

1
1

capacity
matrix

-
<latexit sha1_base64="rPFNS+QcKgnx5PvT7QZwoT7dhaI=">AAAB7XicdVDJSgNBEK2JW4xb1KOXxiB4GmYyMYungBePEcwCyRB6Op2kTc/00N0jhCH/4MWDIl79H2/+jZ1FUNEHBY/3qqiqF8ScKe04H1ZmbX1jcyu7ndvZ3ds/yB8etZRIJKFNIriQnQAryllEm5ppTjuxpDgMOG0Hk6u5376nUjER3eppTP0QjyI2ZARrI7V6mMdj3M8XHLvmlaoVDzm2VyxXa0VDnHLF81zk2s4CBVih0c+/9waCJCGNNOFYqa7rxNpPsdSMcDrL9RJFY0wmeES7hkY4pMpPF9fO0JlRBmgopKlIo4X6fSLFoVLTMDCdIdZj9dubi3953UQPq37KojjRNCLLRcOEIy3Q/HU0YJISzaeGYCKZuRWRMZaYaBNQzoTw9Sn6n7SKtlu2L25KhfrlKo4snMApnIMLFajDNTSgCQTu4AGe4NkS1qP1Yr0uWzPWauYYfsB6+wQGeo9u</latexit>↵

Sum

Over!ow cost Wirelength cost via cost

over!ow cost calculation !ow

wirelenth cost calculation !ow

via cost calculation !ow

2-pin path candidate
probability calculation !ow

routing tree candidate
probability calculation !ow

Constructed DAG forest

DAG forest
construction

Figure 4: Workflow for cost calculation. Segments of the via cost flow (in red) and wirelength cost flow (in purple), are omitted
for simplicity.

4.4 Differentiable Optimization
We cannot, unfortunately, directly optimize the costs defined in Equa-
tion (9) to Equation (12) with respect to the probabilities due to the
following constraints:∑︁

subnet(𝑖)=𝑠
𝑝𝑖 = 1,∀𝑠 ∈ S;∀𝑝𝑖 ∈ [0, 1]∑︁

net(𝑗)=𝑛
𝑞 𝑗 = 1,∀𝑛 ∈ N ;∀𝑞 𝑗 ∈ [0, 1]

To transform the constrained optimization problem into an un-
constrained one, we introduce an auxiliary layer to map uncon-
strained trainable variables (𝑤 = {𝑤𝑖 ∈ R}) to probabilities, as
depicted in Figure 4. A softmax layer seems to be an intuitive fit:

𝑝𝑖 =
exp (𝑤𝑖)∑

𝑘 :tree(𝑘)=tree(𝑖) exp(𝑤𝑘)

𝑞 𝑗 =
exp (𝑤 𝑗)∑

𝑘 :net(𝑘)=net(𝑗) exp(𝑤𝑘)
However, softmax deterministically samples a probability distri-
bution. This deterministic nature can inadvertently lead to local
optima, especially when the probabilities have a bad initialization.
To circumvent this, we employ the gumbel_softmax function [16]:

𝑝𝑖 =
exp ((𝑤𝑖 + 𝑔𝑖)/𝑡)∑

𝑘 :tree(𝑘)=tree(𝑖) exp((𝑤𝑘 + 𝑔𝑘)/𝑡)

𝑞 𝑗 =
exp ((𝑤 𝑗 + 𝑔 𝑗)/𝑡)∑

𝑘 :net(𝑘)=net(𝑗) exp((𝑤𝑘 + 𝑔𝑘)/𝑡)
This function, a stochastic variant of softmax, introduces Gumbel
noise (𝑔𝑖), i.e., the sample from the Gumbel distribution, to the logits
prior to applying the softmax operation. Furthermore, to ensure
that the final sampling of the routing tree candidate is discrete, we
progressively reduce the temperature (𝑡) of the gumbel_softmax
throughout the iterations, called temperature annealing. It ensures

that the final probabilities associated with routing tree candidates
closely approximate either 0 or 1.

We have implemented our differentiable solver within the DGR
framework using the deep learning toolkit PyTorch, as visualized
in Figure 3. Leveraging PyTorch, we benefit from its robust and effi-
cient support for matrix operations, automatic gradient derivation,
and optimization. This toolkit seamlessly integrates GPU accelera-
tion, further enhancing computational efficiency and enabling rapid
experimentation in our research efforts.

4.5 Deriving Discrete Selection
When the maximum iteration count is reached, a 2D routing solu-
tion is derived by selecting candidates based on their associated
probabilities.

Among the routing tree candidates, the one with the highest
probability is selected. This probability tends to approach 1 as a
result of our temperature annealing technique.

For 2-pin path candidates, we employ top-p sampling [17]. Ini-
tially, candidates are ranked by their probabilities. Subsequently, top
candidates are selected until their cumulative probability surpasses
a predefined threshold.

4.6 Post-Processing
Our 2D pattern routing solutionwill undergo dynamic programming-
based layer assignment introduced in [2] to yield preliminary 3D
routing results. Subsequently, maze routing is applied to nets in
congested areas to further minimize overflow. The final output is a
comprehensive guide for detailed routing.

5 Experiments
We implement DGR using PyTorch. Experiments are conducted
on a 64-bit Linux workstation with Intel Xeon Silver 2.20 GHz
CPUs and 256 GB memory. One NVIDIA GeForce RTX 2080Ti
graphics card is used. We use the benchmarks from ICCAD’18 and

DGR: Differentiable Global Router

Table 1: Comparison with ILP on synthetic data. DGR
best/worst is the best/worst result among five runs with dif-
ferent random seeds, respectively. DGR∗ is the best result
after the hyper-parameter search, i.e., additional 100 runs
that randomly sample learning rate from 10−4 to 1 and tem-
perature scaling factor in [0.8,0.85,0.9,0.95].

Synthetic data parameters Runtime (s) Overflow

Grid Graph 𝑐𝑎𝑝𝑒 Net # box
size ILP DGR ILP DGR∗ DGR

best
DGR
worst

20×20 1 20 4 0.08 5.09 30 30 30 30
50×50 1 50 10 36.12 5.16 173 173 173 173
50×50 1 100 10 102.46 4.95 1028 1028 1028 1028
50×50 2 100 10 38.79 4.89 0 0 0 0
50×50 1 1000 10 4621.12 5.59 35445 35445 35445 35445
50×50 10 1000 10 2493.21 78.85 7407 7407 7407 7407
50×50 10 10000 10 N/A 81.24 N/A 364536 364536 364621
100×100 2 1000 20 5763.16 5.83 48846 48846 48849 48891
100×100 2 10000 20 N/A 75.90 N/A 785664 785664 785678
1000×1000 1 100000 200 N/A 924.23 N/A 80237614 80238208 80249124

Ratio >118.28 1.00 1.00 1.00 >1 − 10−6 >1 − 10−5

ILP is implemented via CVXPY [21]. The green indicates that the result is as optimal
as ILP method. N/A means ILP is running out of the time (> 8 hours).

ICCAD’19 contests [18]. The activation function 𝑓 is sigmoid by
default. We use Adam to optimize the weights𝑤 , with the initial
learning rate 0.3. 𝑤 is initialized randomly, and the random seed
is fixed if not mentioned. The iteration number is 1000, and the
initial temperature is 1. For every 100 iterations, we scale down the
temperature by a factor of 0.9.

5.1 Comparison with ILP: Proof of Concept
To understand the gap between the differentiable-based method
and the optimal solution, we first compare DGR with Integer Lin-
ear Programming (ILP) based method. Since the benchmarks in
ICCAD’19 are too large to be completed timely for ILP, synthetic
data is employed for this experiment. Specifically, three G-cells are
arbitrarily selected within a box for each net, designating them as
pins. Both ILP and DGR are tasked with selecting the L-shaped path
candidate for every 2-pin pair to minimize overflow. The overflow
is calculated using ReLU, i.e., overflow =

∑
𝑒∈E ReLU(𝑑𝑒 − 𝑐𝑎𝑝𝑒),

given that ILP does not support alternative non-linear functions.
DGR directly picks the path with the largest probability. The results
are shown in Table 1. Remarkably, when equipped with the appro-
priate hyper-parameter (DGR∗), DGR mirrors ILP’s result quality.
Even in the absence of hyper-parameter optimization, the overflow
disparity between ILP and the least favorable DGR seed remains
below 10−5.

5.2 Comparison with Leading Global Routers
We compare the global routing results of DGR with those of CUGR2
on the most congested ISPD’19 testcases that utilize only 5 rout-
ing layers. It is noteworthy that different global routers employ
various overflow metrics, significantly influencing wirelength and
via count. For fair comparison, we adopt the exact overflow metric
as presented in CUGR2 [2] when evaluating the results of DGR
against those of CUGR2. As illustrated in Table 2, compared with
CUGR2, DGR shows a superior routing quality on all testcases :
the number of G-cell edges with overflow after global routing is
reduced by 23.9%, and the total wirelength and number of vias are
also reduced by 0.95% and 1.28% on average.

Moreover, we compare DGR with SPRoute2.0 [8] and Yao [13]
on the same ISPD’18 benchmark set as presented in [13]. Both
SPRoute2.0 and Yao [13] are leading sequential global routers, show-
casing competitive results on the ISPD’18 benchmarks. As shown

0 5 10 15 20 25 30 35

·1 · 105

0

1,000

2,000

3,000

4,000

3252596

of nets

S
ec

o
n
d
s

CUGR2 DGR

Yao[14] SPRoute2.0
<latexit sha1_base64="tr/8qVALQNswuRLPVyQCd/+QAso=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwFSZpm9Zd0Y3LCrYV2lgm00k7dPJgZlIooX/ixoUibv0Td/6Nk7aCih64cDjnXu69x084kwqhD6Owtr6xuVXcLu3s7u0fmIdHHRmngtA2iXks7nwsKWcRbSumOL1LBMWhz2nXn1zlfndKhWRxdKtmCfVCPIpYwAhWWhqYZsVyarCvWEgltNG9OzDLyLpouE7NgchCqO5U3Jw49apTgbZWcpTBCq2B+d4fxiQNaaQIx1L2bJQoL8NCMcLpvNRPJU0wmeAR7WkaYb3JyxaXz+GZVoYwiIWuSMGF+n0iw6GUs9DXnSFWY/nby8W/vF6qgoaXsShJFY3IclGQcqhimMcAh0xQovhME0wE07dCMsYCE6XDKukQvj6F/5OOY9muVbuplpuXqziK4AScgnNggzpogmvQAm1AwBQ8gCfwbGTGo/FivC5bC8Zq5hj8gPH2CSPKkhQ=</latexit>

3.25 ⇥ 106

0 1 2 3 4 5 6

·1 · 105

0

20

40

60

(a) Runtime vs. # nets

0 5 10 15 20 25 30 35

·1 · 105
0

50

100

·1,000

of nets

M
em

o
ry

(M
B
)

Peak CPU memory
Peak GPU memory

(b) DGR memory vs. # nets

Figure 5: Runtime and memory overhead vs. # nets.
1 The runtime of Yao and SPRoute 2.0 are from [13] and [8], respectively.
2 Yao[13], SPRoute 2.0, and CUGR2 run in a single-CPU-threaded mode,
while DGR employs a single CPU thread and a NVIDIA 2080Ti GPU. For

the largest case, the GPU used in DGR is NVIDIA A100.
3 The DGR runtime excludes the time required to construct the DAG forest,
a process that can be efficiently accelerated by net-level parallelism. We

plan to optimize this aspect when we open source DGR.

in Table 3, The average wirelength is reduced by 2.2% and 4.08%
compared with the Yao [13] and SPRoute2.0, respectively. For the
vias, even though DGR has more vias than Yao [13] and SPRoute2.0
when the benchmark is small (ispd18_test1 - ispd18_test4), the av-
erage number of vias is still reduced by 1.76% and 2.54% since DGR
has less via number when the design becomes larger (ispd18_test5
- ispd18_test10).

5.3 Overflow cost function and Scalability Study
In global routing, how to model overflow cost is essential for re-
sult quality. Here, we represent 𝑓 in Equation (9) using various
functions, namely, ReLU, sigmoid, LeakyReLU, exp, and CELU,
respectively. The results are shown in Figure 6. We can see that
the selection of 𝑓 influences the result, especially overflow, signifi-
cantly, and sigmoid is the best choice, which outperforms CUGR2
(the red X mark) in most cases.

Moreover, we explore the runtime and memory scalability of
DGR. As shown in Figure 5a, DGR has slightly more runtime over-
head than CUGR2 when the number of nets is less than one million,
when the design complexity continues increasing, DGR becomes
more efficient than CUGR2. The reason is that DGR can generate
better initial routing because of its concurrent global optimization
nature, and better initial routing can avoid unnecessary rip-up and
reroute. When the design becomes larger, the benefit can mitigate
the runtime cost of DGR training. The memory result is given in
Figure 5b, which shows that both CPU and GPU memory overhead
is almost linear with the number of nets.

6 Conclusion
In this work, we propose a differentiable global router, which en-
ables concurrent optimization over millions of nets, and can be
accelerated by deep learning toolkits on GPUs. Experimental results
show that our method outperforms the state-of-the-art academic
global router on most testcases.

References
[1] M. Pan and C. Chu, “Fastroute: A step to integrate global routing into placement,”

in Proceedings of the 2006 IEEE/ACM international conference on Computer-aided
design, 2006, pp. 464–471.

[2] J. Liu and E. F. Young, “EDGE: Efficient DAG-based Global Routing Engine,” in
2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, 2023.

Table 2: Performance comparison with CUGR2 [2] on the most congested testcases (with 5 routing layers) from ISPD’19
benchmarks, using the same overflow metric as [2].

Benchmarks # G-cell edges w/ overflow Total Wirelength # Vias
Cell # Net # G-cell Grid Layer # CUGR2 DGR CUGR2 DGR CUGR2 DGR

ispd18_5m 71954 72394 619 x 613 5 9 7 26748345 26569365 878760 868049
ispd18_8m 192003 179863 905 x 883 5 0 0 62171869 61697029 2182804 2152936
ispd18_10m 290386 182000 606 x 522 5 1 1 74439931 74114344 2311291 2283099
ispd19_7m 359746 358720 1053 x 1011 5 0 0 105264205 104697033 3830903 3802312
ispd19_8m 539611 537577 1202 x 1138 5 14 5 176164609 173050359 6276063 6189202
ispd19_9m 899341 895253 1337 x 1433 5 33 33 262680776 260689064 10438277 10294296

Ratio 1.2391 1.0000 1.0095 1.0000 1.0128 1.0000

Table 3: Performance comparison with Yao [13] and SPRoute 2.0 [8] on ISPD‘18 benchmarks using the exactly same testcases
and overflow metric as presented in [13]. The results of Yao [13] and SPRoute 2.0 are from in [13].

Benchmark # G-cell edges w/ overflow Total wirelength # Vias
SPRoute 2.0 Yao [13] DGR SPRoute 2.0 Yao [13] DGR SPRoute 2.0 Yao [13] DGR

ispd18_test1 0 0 0 417181 415116 409081 30460 29677 31683
ispd18_test2 0 0 0 7709980 7699590 7603188 338191 324846 343110
ispd18_test3 0 0 0 8644190 8626810 8531769 336061 326618 347547
ispd18_test4 0 0 0 26246000 26121900 25635347 680322 677125 757225
ispd18_test5 0 0 0 27307600 27183700 26648030 803900 802244 791171
ispd18_test6 0 0 0 35132200 34980000 34249130 1227804 1219063 1182956
ispd18_test7 0 0 0 64964200 64224500 62971368 1979427 1969051 1950290
ispd18_test8 0 0 0 64964200 64224500 63165843 2109296 2082828 1954286
ispd18_test9 0 0 0 53981500 53674000 52504359 1995119 1987919 1937057
ispd18_test10 0 0 0 71709900 67400100 65204874 2182178 2175317 2098285
Ratio 1.0000 1.0000 1.0000 1.0408 1.0220 1.0000 1.0254 1.0176 1.0000

1.505 1.51 1.515 1.52

·107

0.4

0.6

0.8

1

1.2

·105

0.5 * WL + 4 * Via

w
ei
gh

te
d
ov
er
fl
ow

(a) ispd18_5m

6.015 6.02 6.025 6.03

·107

2.5

3

3.5

4
·105

0.5 * WL + 4 * Via

ReLU
sigmoid
LeakyReLU
exp
CELU
CUGR2

(b) ispd19_7m

Figure 6: The impact of activation function on the global
routing results. Each dot is a single run with different activa-
tion functions and different hyper-parametersss. The y-axis
(weighted overflow) is calculated as 10×𝑛1 +1000×𝑛2 +10000×
peak overflow, where 𝑛1 is the number of nets with overflow
after layer assignment, 𝑛2 is the number of G-cell edges with
overflow after global routing, peak overflow is themaximum
overflow among all G-cell edges.

[3] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear steiner
minimal tree algorithm for VLSI design,” vol. 27, no. 1, pp. 70–83, 2008.

[4] C. Albrecht, “Global routing by new approximation algorithms for multicom-
modity flow,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 20, no. 5, pp. 622–632, 2001.

[5] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Scalable 3D global routing
using integer programming,” in Proceedings of the 46th Annual Design Automation
Conference, 2009, pp. 320–325.

[6] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “BoxRouter 2.0: Architecture and imple-
mentation of a hybrid and robust global router,” in 2007 IEEE/ACM International
Conference on Computer-Aided Design. IEEE, 2007, pp. 503–508.

[7] J. Hu, J. A. Roy, and I. L. Markov, “Sidewinder: a scalable ILP-based router,”
in Proceedings of the 2008 international workshop on System level interconnect
prediction, 2008, pp. 73–80.

[8] J. He, U. Agarwal, Y. Yang, R. Manohar, and K. Pingali, “SPRoute 2.0: A detailed-
routability-driven deterministic parallel global router with soft capacity,” in 2022
27th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2022, pp. 586–591.

[9] J. Liu, C.-W. Pui, F. Wang, and E. F. Young, “Cugr: Detailed-routability-driven 3d
global routing with probabilistic resource model,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[10] Z. Guo, F. Gu, and Y. Lin, “GPU-Accelerated Rectilinear Steiner Tree Generation,”
in Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, 2022, pp. 1–9.

[11] S. Liu, Y. Pu, P. Liao, H. Wu, R. Zhang, Z. Chen, W. Lv, Y. Lin, and B. Yu, “Fastgr:
Global routing on cpu-gpu with heterogeneous task graph scheduler,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[12] S. Lin and M. D. Wong, “Superfast Full-Scale CPU-Accelerated Global Routing,”
in Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, 2022, pp. 1–8.

[13] Y. Pengju, Z. Ping, and Z. Wenxing, “Pathfinding Model and Lagrangian-Based
Global Routing,” in 2023 60th ACM/IEEE Design Automation Conference (DAC).
IEEE, 2023.

[14] G. Chen and E. F. Young, “Salt: provably good routing topology by a novel steiner
shallow-light tree algorithm,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 6, pp. 1217–1230, 2019.

[15] W. Li, Y. Qu, G. Chen, Y. Ma, and B. Yu, “TreeNet: Deep point cloud embedding
for routing tree construction,” in Proceedings of the 26th Asia and South Pacific
Design Automation Conference, 2021, pp. 164–169.

[16] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” arXiv preprint arXiv:1611.01144, 2016.

[17] A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,” arXiv
preprint arXiv:1805.04833, 2018.

[18] S. Dolgov, A. Volkov, L. Wang, and B. Xu, “2019 cad contest: Lef/def based global
routing,” in 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019, pp. 1–4.

[19] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang, and Z. Wang, “Assessment of rein-
forcement learning for macro placement,” in Proceedings of the 2023 International
Symposium on Physical Design, 2023, pp. 158–166.

[20] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Y. Young, “Dr. CU 2.0: A Scalable Detailed
Routing Framework with Correct-by-Construction Design Rule Satisfaction,” in
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2019, pp. 1–7.

[21] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling language for
convex optimization,” The Journal of Machine Learning Research, vol. 17, no. 1,
pp. 2909–2913, 2016.

	Abstract
	1 Introduction
	2 Prior Works
	3 Formulation of Pattern Routing Based on DAG Forests
	3.1 Routing DAG Forest
	3.2 Formulation of Pattern Routing

	4 Differentiable Global Router
	4.1 DGR Workflow
	4.2 Routing DAG Forest Construction
	4.3 Continuous Relaxation and Cost Calculation
	4.4 Differentiable Optimization
	4.5 Deriving Discrete Selection
	4.6 Post-Processing

	5 Experiments
	5.1 Comparison with ILP: Proof of Concept
	5.2 Comparison with Leading Global Routers
	5.3 Overflow cost function and Scalability Study

	6 Conclusion
	References

