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Abstract— A major task in chip design involves identifying the location
and shape of each major design block/module in the footprint of the chip.
This is commonly known as floorplanning. The first step of this task is
known as global floorplanning and involves identifying a location for
each module that minimizes wire length and leaves sufficient area for
each module. Existing global floorplanning methods either have non-
convex problem formulation or have trivial global solutions with no
guarantee on the quality of the result. We propose to model the global
floorplanning problem as a Semi-Definite Programming (SDP) problem
with a rank constraint. We replace the rank constraint with a direction
matrix and convexify the problem, whose solution is shown to be a global
optimum if an appropriate direction matrix is chosen. To calculate the
direction matrix, a convex iteration algorithm is used where the problem
is decomposed into two SDP sub-problems. Furthermore, we introduce a
series of techniques that enhance the flexibility, accuracy, and efficiency
of our algorithm. The results show that our proposed method reduces
the average wirelength by at least from 3.02% to 20.01% on different
benchmarks and outline aspect ratios.

I. INTRODUCTION

As the first stage of VLSI physical design, the quality of floor-
planning is critical for the quality of the final design. However,
floorplanning is NP-hard. It is not easy to find high-quality locations
and shapes at the same time. Most existing methods [1]–[5] divide
the problem into two steps: global floorplanning and legalization1.

Global floorplanning finds the module locations that minimize
the wirelength and leaves enough space for each module. The
legalization step gives modules concrete shapes. Wirelength is highly
related to the module locations, therefore, a good global floorplan is
critical for the final floorplanning quality.

In the real world, floorplanning is usually done by highly experi-
enced experts. The problem size is reduced to a manageable level,
usually less than 100 IP-cores/blocks. However, floorplanning is still
open to better solution: the expert may not have enough time to
explore many alternative floorplans. Time pressure and short physical
design circle force finishing the floorplanning on just a few days.
Providing the expert with a high-quality global floorplan as a starting
point will significantly accelerate the design cycle.

Existing global floorplanning methods can be roughly divided into
two categories: packing-based methods [3]–[5] and analytical-based
methods [1], [2], [7]. Packing-based methods translate the global
floorplanning problem into a packing problem. The target (locations
in the 2-D plane) is represented by a delicate designed representation
such as B∗-tree [5], sequence-pair [4], and corner sequence [3].

However, as pointed by Kahng [6], many “complete” represen-
tations have difficulty to deal with natural requirements, such as
the Pre-Placed Module (PPM) constraint. Moreover, working with
a floorplan representation leads to inevitable accuracy loss and
evaluation overhead: the wirelength is calculated in the 2-D plane,
instead of the designed representation. Analytical-based methods
minimize the wirelength by optimizing an objective function in the
2-D plane. But, most existing global floorplanning methods model
the floorplanning as a non-convex problem, requiring non-linear
optimization methods, which get trapped in a local optimum. Also,

1In some papers, the global floorplanning is also called initial floorplan-
ning/rough floorplanning/global distribution; the legalization step is some-
times referred to as shape optimization. We follow the naming rule by Kahng
[6].

many lead to a trivial global optimal solution, for example, where
all modules are placed in the same location.

In this paper, we model global floorplanning problem as a Semi-
definite Programming (SDP) problem with rank constraint. We
replace the rank constraint with an inner product between the target
matrix and a direction matrix, which is shown to be global optimal if
an appropriate direction matrix is chosen. To calculate the direction
matrix, a convex iteration algorithm is used. That decomposes the
problem into two SDP sub-problems.

We summarize the contributions of this paper as follows:

• To the best of our knowledge, this is the first time that a global
floorplanning problem is formulated as an SDP problem, and
also the first time the objective function is convex with a non-
trivial global optimal solution.

• We propose a framework that uses a convex iteration algorithm
to solve the global floorplanning problem. Furthermore, our
framework introduces techniques that enhance the flexibility,
accuracy, and efficiency of the algorithm.

• We evaluate the described framework under different conditions.
Our results show that the proposed algorithm achieves a better
solution than previous global floorplanning algorithms.

The remainder of this paper is organized as follows. Section II
formally defines the global floorplanning problem. Section III re-
views related work on global floorplanning, specifically analytical-
based methods, along with analysis of their limitations. Section IV
presents our SDP-based global floorplanning method, comparing it
to previous methods. Section V evaluates the proposed method on
different conditions and benchmarks. Finally, Section VI concludes
the paper.

II. PROBLEM FORMULATION

In this section, we formally define the global floorplanning problem.
The input of the global floorplanning problem is:

• A set of n modules {p0, ..., pn−1}, each module is associated
with a minimal area constraint si, that is, the module is expected
to be assigned at least si area space in the final floorplan.

• A weighted directed connectivity graph G = (V,E), represented
by its adjacency matrix A, where Aij is the number of signals
passed from pi to pj .

Different from a final floorplan that requires specification of
module shapes, the global floorplanning problem only focuses on the
locations. It determines the “rough” position of each module, such
that wirelength is minimized (wirelength objective) and each module
has enough area to be placed in the next step (area constraint).
Let xi = (xi, yi) ∈ R2 be the center coordinate of module pi.
Collect the center coordinates as the columns of a matrix X , i.e.,
X = [x0, ...,xn−1]

T ∈ R2×n, where n is the number of modules.
Formally, the objective is:

min
X

n∑
i=0

n∑
j=0

Aij · ||xi − xj ||1 (1)

s.t. each module has enough space to be placed (2)

where Aij is the entry of the adjacency matrix A.



-2 -1 0 1 2 3 4

3

4

5

6

7

8

(a) Plot xi-fij of AR
model

-2 -1 0 1 2 3 4

2

3

4

5

(b) Plot xi-fij
of PP model

Fig. 1 Plot xi-fij , all other variables and parameters are set to 1.
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Fig. 2 The minimal objective value is expected to happen when
circles are tangent (Fig a). But in AR and PP, it may happen when
circles are far if the corresponding Aij is small (Fig b). Both numbers
and line thickness represent the value of Aij .

III. RELATED WORK

In this section, we introduce the previous global floorplanning meth-
ods, and discuss how they represent the area constraint. Moreover,
limitations of these methods are discussed.

A. Attractor-Repeller (AR) model [1], [8]
In the AR model, each module pi is represented by a circle with
radius ri, where ri is proportional to

√
si. As the name suggests,

the AR model is composed of two parts: an attractor and a repeller.
The attractor is designed so that two modules tend to attract each
other if they are connected in the connectivity graph. On the contrary,
the repeller prevents two modules from being too close to each other
to satisfy the area constraint. Formally, the objective function F is
the sum of the attractor and repeller terms of each module pair, i.e.,
F =

∑
i ̸=j fij , where fij is defined as:

fij =

{
Aijdij +

tij
dij

− 1 when dij ≥ Tij

2
√

Aijtij − 1 when 0 ≤ dij < Tij

(3)

Here, tij = σ × (ri + rj)
2, σ is a hyperparameter, dij = ||xi −

xj ||2 is the Euclidean distance square between module pi and pj ,
Tij =

√
tij/(Aij + ϵ), and ϵ is a sufficiently small number. The

term Aijdij is the attractor to minimize the distance, while the term
tij
dij

− 1 is the repeller (area constraint). dij → fij from the first
equation in Equation (3) is a monotonic increasing function in the
range [Tij ,∞). Therefore, the minimal value of the first equation
occurs when dij = Tij , and it is exactly 2

√
cijtij−1, the same term

in the second equation. This way, the objective function is shown to
be convex [8]. Fig. 1(a) is an example plot of xi-fij showing its
convexity.

Despite being convex, the AR model has several limitations. First,
there is no penalty term when two circles (modules) overlap, which
causes serious overlap in the global floorplan. Second, the convex
AR problem has a trivial global optimal solution, namely, all the
circles are placed at the same place. Since the AR optimal solution
is trivial, to obtain a valid and good result, a carefully designed line
search procedure is required [8] to avoid the trivial global optimum,
which is not feasible in practice. In their practical implementation
[1], [8], the second equation is not used and a non-linear solver
using a gradient-based algorithm is adopted. The final problem of
the AR model occurs with its optimal solution. If a module is close
to be a square, we expect the optimal value happens when circles
are tangent, which is when the distance is minimal and the overlap

does not occur. One example is shown is Fig. 2(a). However, for AR,
the optimal solution happens when dij = Tij =

√
tij/(Aij + ϵ) =√

σ/(Aij + ϵ)(ri + rj). This means that the minimum is related
to the value of Aij : when Aij is small, the minimum is when two
circles are far away from each other; when Aij is large, the optimal
is when two circles overlap, see Fig. 2(b).

B. Push-Pull (PP) model [2], [9]
Similar to the AR model, the PP model also represents the module
by a circle, and the objective function is also composed of an
attractor (Pull) and a repeller (Push). Let the objective function
F =

∑
i̸=j fij , fij be defined as:

fij =

Aijdij + sij
(

ri+rj
dij

− 1
)

when ri + rj ≥ dij

Aijdij +
ri+rj
dij

− 1 when ri + rj < dij
(4)

where sij = (ri × rj)
2, and dij = ||xi − xj || is the Euclidean

distance between module pi and pj .
The function fij (Equation (4)) is convex only within an open

convex set excluding the intersection between hyperplane xi = xj

and hyperplane yi = yj
2. Fig. 1(b) is a simple example of this

non-convexity. In this setting, except for xi, all other variables and
parameters (including xj) are set to 1, it is clear to see that fij is
not convex with respect to xi: it is convex only when xi is restricted
to the range (1,∞) or (−∞, 1), but not to R. In other words, only
when xi > xj or xi < xj can we say that fij is convex. Because
the objective is non-convex, using a gradient-based method obtains
only a local optimum. The second problem with PP is similar to AR
(Fig. 2(b)): where the optimal value happens is related to the value
of Aij . A small Aij leads to two circles that are far away from each
other, which is not desired.

C. Quadratic programming
Quadratic programming (QP) is widely used in global placement
[10]–[12] as an initial solution. Li [13] adopts QP in the fixed-outline
floorplanning for an initial floorplan. Simply speaking, the objective
function in Equation (1) is approximated by a quadratic function
using the Euclidean distance square:

min
x,y

1

2
xTCx+ xTd+

1

2
yTCy + yTd (5)

Here, x,y are the x-coordinates and y-coordinates of the modules,
respectively, C represents the connectivity between movable mod-
ules, and d is the vector defining the connections between fixed and
movable modules. Reference [11] provides details about C and d.

Objective (5) is convex, and the global optimal solution can be
obtained efficiently. However, it only contains an attraction force,
resulting in significant overlap in the final result. Moreover, when
all modules are movable, i.e., b = 0, the convex objective is
reduced to: 1

2
xTCx+ 1

2
yTCy that always gives a trivial solution:

all modules are placed at the same position.

IV. SDP-BASED CONVEX ITERATION

In this section, we introduce our solution (Section IV-A) and enhanc-
ing algorithm (Section IV-B), and we present an overall algorithm
(Section IV-C). Finally, we compare with previous methods (Sec-
tion IV-D).

A. Iterative SDP-based optimization
We will first introduce how the problem is reformulated as a “nearly-
convex” optimization problem and then solve it by an SDP-based
convex iteration [14].

In global floorplanning, shapes of modules are unknown, each
module pi is modeled as a circle whose center is xi ∈ R2 with radius

2The proof in [2] does not hold when dij = 0. The derivative and Hessian
of fij do not exist when dij = 0 (Lemma 1 in [2]), therefore: fij is not a
twice continuously differentiable function over R4 (Corollary 1 in [2]).



ri =
√

si/4, where si is the minimum area constraint of module
pi. Due to the absence of shapes, we only care about minimizing the
wirelength. At the same time, the area constraint is expected to be
satisfied as much as possible, i.e., each module should be left with
enough area for the final floorplan. Formally, the wirelength among
modules is estimated by:

⟨A,D⟩ (6)

where ⟨·, ·⟩ is an inner product, and A is the adjacent matrix of
the connectivity graph. D is the Euclidean distance matrix, and the
entry Dij is the Euclidean distance square between pi and pj , i.e,
Dij = ||xi − xj ||2.

Define the Gram matrix G = XTX ∈ Sn
+, where Sn

+ represents
the positive semi-definite matrix. Since Dij = Gii+Gjj−Gij−Gji,
the objective can be rewritten as:

⟨B,G⟩ (7)

where B ∈ Rn×n is defined by:

Bij =

{∑n−1
k=0 Aik +

∑n−1
k=0 Akj when i = j

−2Aij when i ̸= j
(8)

Note that B is a constant known matrix since A is given. We further
define Z as:

Z =

[
I X

XT G

]
∈ S2+n

+ (9)

Using Z, the constraint G = XTX is relaxed to G ⪰ XTX ,
which is exactly Z ⪰ 0 by Schur’s complement. Given all definitions
described, the objective and constraints can be formulated in matrix
form as:

Main problem:

min
Z

⟨B,G⟩ (10)

s.t. Dij ≥ (ri + rj)
2 ∀i, j ∈ {0, ..., n− 1} (11)

Z ⪰ 0

rank(Z) = 2 (12)

where Equation (11) guarantees that the Euclidean distance between
two circles is larger than the sum of their radius (area constraint).
Z ⪰ 0 is a relaxation of G = XTX , and Equation (12) makes sure
that the equation (G = XTX) holds.

Without the rank constraint in Equation (12), the problem is
obviously an SDP problem3. However, the rank constraint makes the
problem non-convex. We replace the rank constraint using a direction
matrix Wopt. Formally, the main problem can be rewritten as:

Convexified problem:

min
Z

⟨B,G⟩+ α⟨Wopt,Z⟩ (13)

s.t. Dij ≥ (ri + rj)
2 ∀i, j ∈ {0, ..., n− 1}

Z ⪰ 0

Here, α is a hyper-parameter controlling the rank constraint penalty.
With an appropriate Wopt, i.e., ⟨Wopt,Z⟩ = 0, the two problems
are equivalent, which means the global optimal solution in the
convexified problem is also equivalent to the global optimum in the
main problem.

The intuitive explanation for Wopt is as follows. The rank con-
straint (rank(Z) = 2) can be rewritten as:

trace(Z)− λ0 − λ1 = 0 (14)

where λ0 and λ1 are the two largest eigenvalues of Z, and can be
calculated by:

λ0 = max
||u0||=1

uT
0 Zu0 and λ1 = max

||u1||=1,u1⊥u0

uT
1 Zu1 (15)

3Note that Dij = Gii+Gjj−Gij−Gji is also an inner product between
some constant matrix C and the Gram matrix G.

Then, the rank constraint Equation (15) can be rewritten as:{
Z : min

||u0||=1,||u1||=1,u1⊥u0

⟨I − [u0,u1][u0,u1]
T ,Z⟩ = 0

}
(16)

The above is equivalent to{
Z : min

I⪰W⪰0
⟨W ,Z⟩ = 0

}
(17)

Adding Equation (17) back to Equation (7) with a coefficient α,
the rank constraint is re-written as a bilinear term in the objective
function.

Consider an optimal solution Zopt for the main problem. Selecting
Wopt = Uopt ∗ UT

opt makes the convexified problem equivalent
to the main problem, where columns of Uopt are the normalized
eigenvectors of Zopt corresponding to the n smallest eigenvalues.
However, this is infeasible since Zopt is unknown and needs to be
determined. To obtain Wopt and corresponding optimal solution Zopt,
we decompose it into two SDP sub-problems [14]:

Sub-probem 1:

min
Z∈S2+n

⟨B,G⟩+ α⟨W ∗,Z⟩ (18)

s.t. Dij ≥ (ri + rj)
2 ∀i, j ∈ {0, ..., n− 1}

Z ⪰ 0

Sub-probem 2:

min
W∈S2+n

⟨W ,Z∗⟩ (19)

s.t. I ⪰ W ⪰ 0

trace(W ) = n

The two sub-problems are solved iteratively, that is, W ∗ is
the optimal solution from Equation (19) and Z∗ is the optimal
solution from Equation (18) respectively. At the first iteration, W ∗

is initialized as W 0 = I , which reduces ⟨W ∗,Z⟩ in Equation (18)
to a trace heuristic for minimizing the rank using the 1-norm of the
diagonal entries, whose 0-norm is the rank. The iteration is stopped
when the objective values of Equation (18) and Equation (19) are
not improved. When the iteration converges to a point such that
⟨W ∗,Z∗⟩ = 0, the rank constraint is satisfied, and we get the global
optimal solution of the convexified problem.

B. Enhancement to the algorithm

In the real world, there are many other requirements that need to be
considered, e.g., boundary I/O pads. In this section, we will develop
techniques that enhance the flexibility, accuracy, and efficiency of
the algorithm.

a) Euclidean distance square to Manhattan distance
In our objective function (Equation (6)), we use an Euclidean

distance square matrix D to estimate the wirelength. The Manhattan
distance may estimate the wirelength better. Sometimes, an optimal
solution that minimizes Euclidean distance square does not guarantee
optimal wirelength, and may even be a bad solution in terms of
wirelength.

To address this issue, we propose to use an adaptive B matrix
that changes during the iterations. Let D(t)

ij ,M
(t)
ij be the Euclidean

distance square and Manhattan distance between xi and xj at
iteration t, respectively. The basic idea is that, at each iteration t,
rather than minimize the cost c

(t)
ij = AijD

(t)
ij that is quantified

by Euclidean distance square, we minimize an adaptive cost c
′(t)
ij

calculated by:

c
′(t)
ij =

M
(t−1)
ij

D
(t−1)
ij

c
(t)
ij =

M
(t−1)
ij

D
(t−1)
ij

AijD
(t)
ij (20)

Since the Manhattan distance and Euclidean distance square between
two modules do not change significantly for any single iteration, the
adaptive cost c′(t)ij is close to the cost quantified by real wirelength.



To do this, for t > 0, A(t)
ij is updated as: A(t)

ij =
M

(t−1)
ij

D
(t−1)
ij

Aij , and

B at each iteration is also updated based on A(t).
The technique can be extended to hyper-edges. Let e =

{p0e, ..., pke} be the hyper-edge connecting k modules, then, at each
iteration, e only influences Aij if i and j are connected by e, and
both of them are on the boundary of the e’s bounding box at the
last iteration. Reference [11] provides a detailed description of the
hyper-edge case.

b) Boundary pin and fixed outline
Sometimes, modules are connected to boundary pins, e.g. I/O pads.

These boundary pins can be inserted into our system without adding
variables. Let us say that there are m boundary pins, and their center
coordinates form a matrix X ∈ R2×m, A ∈ Rn×m is the matrix
storing the connectivity information from modules to boundary pins,
i.e., Aij is the number of signal passed from module pi to jth

boundary pin. The objective function between pi to jth boundary
pin is estimated by their Euclidean distance square: cij = AijDij ,
where Dij = ||xi−xj ||2 = Gii−2xixj+x2

j . Formally, minimizing
cij is equivalent to:

min
xi

⟨B,Z⟩ (21)

where B is all-zero except 1) B2+i,2+i = Aij ; 2) B2+i,:2 = −2xT
j ;

3) B:2,2+i = −2xj . Integrating Objective (21) into the original
objective, the wirelength between modules to boundary pins is also
minimized. Another special case is a given outline of the chip, a
simple incorporation is to add a lower bound and upper bound of
X , which is just a part of Z.

c) PPM constraint
Sometimes, modules are pre-placed. This is called a Pre-Placed

Module (PPM) constraint. If a module pi is fixed, then xi will have a
given fixed value. Our formulation can be easily extended to handle
PPM constraints by adding equation constraints in the main problem
and the first sub-problem. After adding PPM constraints, the main
problem becomes:

Main problem with PPM:

min
Z

⟨B,G⟩ (22)

s.t. Dij ≥ (ri + rj)
2 ∀i, j ∈ {0, ..., n− 1}

Gij = xT
i xj ∀i, j where pi and pj are fixed (23)

X:,i = xi ∀i where pi is fixed (24)

Z ⪰ 0

rank(Z) = 2

The problem above is also decomposed into two sub-problems and
solved iteratively, where the two new distance constraints (Equa-
tion (23) and Equation (24)) are added to the first sub-problem.

d) Non-square requirement
In our formulation, each module is modeled as a circle based on

prior knowledge that a module is expected to be like a square. But,
in some cases, a module can be a rectangle. For example, the soft
module in fixed-outline floorplanning is a rectangle that has fixed
area but a flexible aspect ratio. In these cases, a circle is not a good
approximation, and strict distance constraints in Equation (11) may
even harm the solution quality. To address this issue, we propose
an adaptive distance constraint that is based on the maximum aspect
ratio of the modules and the value of Aij . Consider Fig. 3, the
orange circle pi havs radius ri. Let k be the maximal aspect ratio of
the module. We approximate the “forbidden zone” of pi as 2ri

k
(the

orange line in Fig. 3), which represents the length of the segment that
cannot be occupied by other modules. Because 2ri

k
+ β = 2ri and

the distance between two circle centers is ri + rj − β, the distance
constraint can be written as:

(a) (b)

Fig. 3 The illustration of an adaptive distance constraint. (a) The
orange part is an approximation of a rectangle with height 2ri and
width 2ri

k
; (b) Multiple neighbors cause the circle to be squashed.

Dij ≥
(
rj − ri +

2ri
k

)2

(25)

When k is 1, i.e., the module is expected to be a square,
Equation (25) is equivalent to Equation (11). When k is greater than
1, e.g., k = 3, the module has a forbidden segment with length at
least 2ri

3
, which mimics a rectangle with width 2ri

3
and height 2ri.

To make 2ri
2ri
k

= si, ri is set to
√

ksi
4

. When pi is connected with
multiple modules in G, Equation (25) should be adjusted: otherwise,
the circle might be squashed by other modules (See Fig. 3(b)). To
do this, k in Equation (25) is replaced by kij , which is defined by
kij =

Aij∑
l∈Ni

Ail
(k − 1) + 1, where Ni is the neighbors of i in G.

The intuition is, if two modules are closely connected, i.e., Aij is
large, then pj is “allowed” to be closer to pi, but is always upper
bounded by kij ≤ k. Furthermore, since Dij = Dji, the distance
constraint can be formalized by:

Dij ≥ max

((
rj − ri +

2ri
kij

)2

,

(
ri − rj +

2rj
kji

)2
)

(26)

C. Overall Algorithm
Here, we present the overall algorithm combining the basic algorithm
in Section IV-A and the enhancing techniques in Section IV-B. The
algorithm is summarized in Algorithm 1. Ideally, we expect to use
the smallest α that finds a feasible Z with rank 2. To achieve this,
we start from a small α and increase it by a factor of 2 until the rank
constraint is satisfied. For each α (Line 2 - 12), we iteratively solve
the two sub-problems as described in Section IV-A. Some techniques
described in Section IV-B are applied in this iterative process. For
example, the constant matrix B is updated each iteration (Line 9)
to estimate the Manhattan distance rather than a distance square
(See Paragraph IV-B0a). When the solution of the two sub-problems
converge or an iteration limit is reached (Line 10), we check the rank
of Z (Line 12). If the rank is 2, we stop the algorithm and return
the solution. Otherwise, we increase the rank constraint penalty, α,
and repeat the process.

D. Comparison with other methods
In this section, we follow the discussion in Section III, and compare
our method with others from the following perspectives.

Convexity and non-trivial global optimum. As stated before,
both QP [13] and AR [1], [8] have convex problem formulations.
However, their global optimal solution is trivial most of the time,
placing all module centers at the same location is the global optimum.
In contrast, the objective function of PP [2] is non-convex for the
solution space, but the global optimum is not a trivial same-location
solution. Compared with these methods, our SDP-based method
divides the problem into two sub-problems, where both of them are
convex and have a non-trivial global optimum.

Controllable area constraint. Another limitation of previous
work is the lack of control over the area constraint, i.e, making
sure that each module has enough space to be placed. QP does



Algorithm 1 SDPGlobalFloorplanning

Require: α → the penalty coefficient for the rank constraint term in
Objective 18;

Require: A → the adjacent matrix of the connectivity graph G;
Require: s → the minimal area constraint of each module;
Require: ϵ → A very small number;
Require: max iter → Maximal allowed iteration;
1: repeat
2: t ← 0; ▷ iteration counter
3: W (0) ← I; ▷ initialization using a trace heuristic
4: B(0) ← Get B using Equation (8);
5: repeat
6: t ← t+ 1;
7: Z(t) ← Solve sub-problem 1 using W (t−1);
8: W (t) ← Solve sub-problem 2 using Z(t);
9: B(t) ← Update B following Equation (20);

10: until ||Z(t) − Z(t−1)|| + ||W (t) − W (t−1)|| < ϵ or t ≥
max iter

11: α ← α × 2; ▷ increase the rank constraint penalty coefficient
12: until ⟨W (t),Z(t)⟩ < ϵ ▷ the rank constraint is satisfied
13: return Z(t)[2 :, : 2]; ▷ the final X

QP AR [1], [8] PP [2] Ours
Convex Yes Yes No Yes

Non-trival optimal Depends No Yes Yes
Area constraint No Partly Partly Controllable

Quality Poor Good Good Near optimal
Efficiency Very fast Fast Fast Poor

TABLE I Comparison with other methods.

not consider the area constraint in the objective function, both AR
and PP introduce a repeller force to push the modules away from
each other, and the repeller force combats the attractor force that is
affected by Aij . These soft constraints lose the control of the distance
between modules, which is important in some cases, e.g., the timing
requirement for some paths. As a side effect, the final results either
generate too much overlap, or too much distance between modules:
when the attractor force is too weak, i.e., Aij is small, the repeller
force pushes two modules to a stable point that is far from each
other. On the contrary, our method can directly control the distance,
i.e., add Dij ≥ ... or Dij ≤ ... to the constraint. One example is
the non-square requirement introduced in Paragraph IV-B0d.

Result quality. AR and PP are solved by a non-linear optimization
package and easy to be trapped in a local optimum. The objective
of QP does not consider the area constraint, which results in large
overlapping. Therefore, an innegligible effort is still needed to satisfy
the area constraint. Compared with these methods, our algorithm is
shown to be global optimal if an appropriate W is selected [14].
Although the convex iteration only guarantees a local optimum,
previous experiments on other fields show that the convergence
happens at the global optimum most of the time [15], [16].

Efficiency. QP is the fastest method among these methods, since it
can be solved by a single run of some off-the-shelf convex solver. AR
and PP are also fast enough using some gradient-based optimization
method. However, our SDP-based method is much slower than these
methods: the SDP sub-problem in each iteration has an exponential
time complexity, and the number of iterations for convergence also
increases with the problem size according to our experiments. The
exponential time complexity inhibits the extension of our method to
large-scale problems.

V. EXPERIMENTAL RESULTS

Our algorithm along with other state-of-the-art global floorplanning
methods are implemented in Python. The convex optimization solver
is MOSEK 10.0 [17]. For non-linear optimization, PyTorch Minimize
[18] with BFGS algorithm is used. A legalization framework similar

to previous works [2], [19] is implemented: with the global floorplan
as the input, horizontal and vertical constraint graphs are constructed,
then the shape optimization is modeled as a second order cone
programming instance. Final HPWL is reported after the legalization.
MCNC and GSNC are used for experiments. The aspect ratio
constraint for modules is between 1/3 and 3. All experiments are
run on a 64-core server with 2.2GHz CPU. We emphasize that
global floorplanning is not limited to the automated fixed-outline
floorplanning. A high-quality global floorplan with an accurate center
coordinates approximation is helpful for manual floorplanning.

We first explore the property of our algorithm, and study how the
proposed techniques influence the result. Effect of α on the result
quality is given in Fig. 4. In general, larger benchmark requires a
larger α. Fig. 4 also shows the effect of enhancement techniques.
The non-square technique improves the result significantly except
for the very small case (n10). Manhattan distance and hyper-edge
approximation further improve the result on the basis of the non-
square technique. α also influences the convergence rate and the
final result quality. As shown in Fig. 5(a), larger α leads to faster
convergence, but may get worse result. The convergence is also
affected by the problem size. Larger benchmarks need a larger α
to converge: α = 1024 for n10 converges within 10 iterations, but
the objective value is still decreasing for n50 and n100. The result in
Fig. 5 shows the runtime per iteration increases exponentially with
the problem size. From the two figures, our algorithm may not be
scalable to large case, where well-studied placement techniques [10],
[13] are recommended.

We also compare different global floorplanning methods on the
fixed-outline floorplanning problem. In our algorithm, max iter is
50, α starts from 0.5 except n100 and n200, whose max iter is
100/20 and α starts from 1024. As shown in TABLE II, comparing
with AR [1] and PP [9], ours reduces HPWL on average by 14.71%
and 15.58% on aspect ratio 1:1 and 14.59% and 20.10% on aspect
ratio 1:2, respectively. We also compare with other two methods,
as shown in TABLE III. [7] is an analytical method based on non-
convex density control. Parquet-4 [20] is a simulated annealing based
method. Ours achieves better results than others on both ratios,
which demonstrates the robustness of our algorithm. However, our
advantage is less significant on large cases. n100 is a sweet spot for
previous algorithm, where [7] outperforms ours. One reason might
be the post-process adopted in [7]. Nevertheless,for larger problem
sizes (n200), non-convex methods become trapped in local optima,
while our algorithm gives better with only 20 iterations (about 2.5
h solve time).

VI. CONCLUSION

In this paper, we propose an SDP-based iterative algorithm that
divides the problem into two convex sub-problems. We also design
enhancement techniques to improve the flexibility, accuracy, and
efficiency of the algorithm. The results show that our proposed
method achieves better performance than previous algorithms. How
to accelerate the algorithm, or design a hierarchical framework to
enhance the scalability will be future work.
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