
Adaptive Layout Decomposition with Graph Embedding
Neural Networks

Wei Li∗, Jialu Xia∗, Yuzhe Ma∗, Jialu Li∗, Yibo Lin†, Bei Yu∗
∗The Chinese University of Hong Kong †Peking University
{wli,byu}@cse.cuhk.edu.hk, yibolin@pku.edu.cn

Abstract— Multiple patterning lithography decomposition (MPLD)
has been widely investigated, but so far there is no decomposer that
dominates others in terms of both the optimality and the efficiency.
This observation motivates us exploring how to adaptively select the
most suitable MPLD strategy for a given layout graph, which is non-
trivial and still an open problem. In this paper, we propose a layout
decomposition framework based on graph convolutional networks to
obtain the graph embeddings of the layout. The graph embeddings are
used for graph library construction, decomposer selection and graph
matching. Experimental results show that our graph embedding based
framework can achieve optimal decompositions under negligible runtime
overhead even comparing with fast but non-optimal heuristics.

I. INTRODUCTION

The semiconductor industry nowadays is greatly challenged by ex-
treme scaling which imposes severe issues on circuits manufacturing.
Among various advanced lithography techniques, multiple patterning
lithography (MPL) is one of the most practical solutions to enhance
the manufacturability and has been widely adopted in industry [1].

The core problem of multiple patterning lithography is the layout
decomposition which assigns features on a layout to separate masks
for printability improvement and is also called multiple patterning
lithography decomposition (MPLD). If two features located closer
than minimum coloring distance are assigned to the same mask, a
coloring conflict is introduced. Additionally, stitches can be inserted
to assist conflict resolving, at a cost of potential yield loss though.
Therefore, the objective of MPLD is to find a mask assignment for
features such that the number of conflicts and stitches are minimized.

Due to the NP-hardness of the general layout decomposition prob-
lem, a variety of decomposition approaches have been proposed to
achieve high quality and efficiency. These approaches can be roughly
categorized into three types: mathematical programming, graph-
theoretical approaches and heuristic approaches. The mathematical
programming approach formulates the problem into integer linear
programming (ILP) [2]–[7], and its relaxations such as semi-definite
programming (SDP) [5], linear programming (LP) [8] and discrete
relaxation method [9]. Besides mathematical programming, graph-
theoretical approaches resolve the problem with graph theories, e.g.,
the maximal independent set (MIS) [10], the shortest-path [11],
[12], and the fixed-parameter tractable (FPT) [13] algorithms. Some
heuristic approaches are also proposed in [5], [10], [14], [15], which
are generally efficient but may have low quality. A recent work
formulated MPLD into an exact cover problem and achieved high
quality and efficiency with algorithm X [15]. Another extremely
fast solution is based on graph matching [14], in which a coloring
solution library for small graphs is constructed, and then graphs are
colored efficiently by graph matching.

Although many decomposition algorithms have been developed,
there is no conclusion that one decomposer is always better than
another. ILP-based method ensures the optimality but suffers from
runtime overhead for large layouts. Exact-cover (EC) based method
demonstrates high efficiency for large layouts at a cost of marginal

…

Fig. 1 An example of graph embeddings of layout graphs, where the
graphs are transformed into vector space.

degradation on the solution quality. The graph matching based
method shows good performance in both efficiency and quality for
small graphs. But the library size of this method cannot be too large
and only non-stitch graphs are supported, which is not applicable
to large layouts or layouts with stitches. This observation motivates
that it is worth exploring how to adaptively select the most suitable
MPLD strategies for a given layout, which is non-trivial and still an
open problem so far.

With successful deep learning applications in various fields by
learning from historical data, we can naturally cast the problem into a
classification task and leverage learning-based approaches. We need
to investigate as much information of the graphs as possible and
let our framework learn to adaptively utilize proper decomposition
algorithms. However, graphs usually vary in terms of scale, making
them hard to digest for learning models. Therefore, we need to obtain
graph embedding under unified shape to represent the graph as shown
in Fig. 1. Specifically, we use some techniques to generate the graph
embedding such that the graph is transformed into a vector space in a
lower but unified dimension with maximal representation capability
and the powerful graph embedding helps us to adaptively select the
best decomposer, where the best refers to the best solution quality
at the lowest runtime.

Among different graph embedding methods, graph convolutional
network (GCN) is widely used for irregular graph representations.
In this paper, we adopt relational graph convolutional network
(RGCN) to obtain graph embeddings, which is a variant of GCN
to handle heterogeneous graphs. The graph embedding is then used
as a representation to select ILP-based decomposer (optimal but
slow) or EC-based decomposer (efficient but may not be optimal).
Besides decomposer selection, the graph embedding helps us to avoid
isomorphic graphs during library construction. After that, it is used
for matching graphs efficiently in the library.

The main contributions are summarized as follows:

• We use an RGCN-based neural network which generates graph
embedding of the layout graph.

• We design a graph library construction algorithm based on
graph embeddings for small graphs excluding isomorphic ones.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 08,2020 at 09:57:36 UTC from IEEE Xplore. Restrictions apply.

• We propose an adaptive workflow for efficient decomposer
selection and graph matching using graph embeddings.

• We conduct experiments on widely used benchmarks and ex-
perimental results demonstrate that our framework can reduce
the runtime by 87.7% while still preserving the optimality
compared with optimal but slow ILP-based decomposer.

The rest of this paper is organized as follows. Section II introduces
basic terminologies and evaluation metrics related to this work.
Section III shows details of the GCN-based framework, including
graph library construction and GCN model construction. Section IV
covers experimental results and Section V concludes the paper.

II. PRELIMINARIES

A. Multiple Patterning Lithography Decomposition (MPLD)
The input of MPLD is a layout specified by features in polygonal
shapes, which is usually translated into an undirected heterogeneous
graph G = (V,E), where every node vi ∈ V corresponds to one
complete or segmented feature in the layout and each edge eij ∈
E represents a kind of relation between nodes. E is composed of
conflict edge and stitch edge and is denoted by E = {Ec ∪ Es},
where Es is the set of stitch edges and Ec is the set of conflict
edges. The objective of MPLD problem is to minimize the weighted
summation of the conflict number and the stitch number and can be
formulated as:

min
∑

cij + α
∑

sij , (1)

where cij , sij are binary variables and represent conflict edge eij ∈
Ec and stitch edge eij ∈ Es respectively. α is a parameter indicating
the relative importance between the conflict cost and the stitch cost,
which is usually set as 0.1. The values of cij , sij are determined by
the colors of the two corresponding nodes vi, vj . Specifically, if vi
and vj are assigned the same color, then cij = 1 (sij = 0). On the
other hand, cij = 0 (sij = 1) when two nodes are assigned different
colors.

B. Graph Isomorphism and Graph Matching
Intuitively, graph isomorphism problem is to decide whether two or-
dered graphs are identical after they are un-ordered. Graph matching
is not only to decide whether they are identical or not, but also to
give an order map of nodes if they are identical.

The formal definition of graph isomorphism and graph matching
is stated as follows [16]: Given two graphs G1 = (V1, E1), G2 =
(V2, E2) with |V1| = |V2|, where V1, V2 and E1, E2 are corre-
sponding node sets and edge sets, respectively. The object of graph
matching is to find a node-to-node mapping f : V1 → V2 such
that (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2. This is called
an isomorphism if such a mapping f exists, and G1 is said to be
isomorphic to G2.

In graph library construction, graph isomorphism is one of the
most critical factors because n! − 1 isomorphic graphs of any
valid graph will be re-collected in the library if no isomorphism-
free techniques are used, where n is the number of nodes. Also,
graph matching is inevitable when extracting the corresponding node
coloring results stored in the graph library for the matched graph.

C. Graph Convolutional Network (GCN)
With the development and further study of Neural Network, GCN, as
a branch of Neural Network, has shown promising results in many
domains such as the graph embedding.

Generally speaking, GCN takes the graph as input and returns the
node embeddings or graph embeddings. Usually, GCN is composed
of two modules, aggregator and encoder, which exploit the neighbor-
hood information and node attributes respectively. Specifically, for

each node u in graph G, the aggregator is to aggregate neighbor
v’s representations hv and obtain an intermediate representation
ĥu such that the final graph embedding is able to contain graph
structure information. Especially, one virtual additional edge is added
to each node, i.e. a single self-connection whose weight is defined
as 1 to guarantee that the latter layer’s node representation can also
be informed by the corresponding representation at the previous
layer besides neighbors. Encoder is to multiply the aggregated
representation ĥu with a learnable matrix followed with a non-
linear activation function. GCN can be also explained in a message-
passing way where the intermediate representations can be viewed
as messages. The aggregation is the actual message-passing phase
and each node passes its message to its neighbors along the edge.
The encoder is served as the integration phase, in which each node
integrates received the message and reduces it into its new message.
Each message-pass and integration phase formulate one GCN layer.
The representation after the final layer is called the node embedding
of each node and the graph embedding by GCN is usually obtained
by a summation or mean operation using node embeddings.

D. Problem Formulation
Given a set of layout graphs and two state-of-the-art decomposers,
ILP-based decomposer and EC-based decomposer, our objective is
to train an RGCN model to obtain the graph embeddings such that
1) the embeddings can be used to build a graph library for small
graphs, recording the coloring solutions; 2) any new graph can find
the best decomposer using its embedding; 3) any new small graph
can find the coloring solution directly through graph matching with
graphs in the library.

III. ALGORITHMS

A. Overview
Our framework can be divided into two modules by whether the
operation is needed in decomposition (online) or not (offline). The
offline module is prepared before any decomposition, including graph
library construction and RGCN model training.

Graph Simplification

Graph Simplification RGCN

Selection Selected Decomposer

Graph Matched?Node num < k?Stitch Insertion
Y Y

NN
Return
Results

Fig. 2 The workflow of our framework. Purple blocks are executed
in our framework while the yellow blocks are directly executed in
OpenMPL [17].

Firstly, we train the RGCN model, then we use graph embeddings
obtained by the trained RGCN model to build the isomorphism-
free graph library. When the above offline steps are finished, we
can execute layout decomposition following the workflow shown
in Fig. 2. The input is transformed into a graph first and is
simplified by several simplification techniques such as Independent
Component Computation (ICC) [5], Hide Small Degrees [5], [14],
Biconnected Component Analysis [3], [4]. Next, stitch candidates
are inserted by pattern projection [5]. After stitch insertion, the
simplified homogeneous graphs are transformed into heterogeneous
graphs which contain both conflict and stitch edges and then these
simplified heterogeneous graphs are fed into the RGCN model to
obtain the graph embeddings. For a graph whose graph size is under
the size constraint max size, the corresponding graph embedding

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 08,2020 at 09:57:36 UTC from IEEE Xplore. Restrictions apply.

is first used to determine whether there is an isomorphism between
the target graph and graphs in the library. If the isomorphic graph
is found in the library, the corresponding node embeddings of
two graphs are used to get the node-to-node mapping and directly
return the final coloring result by the mapping in the library. If
no isomorphic graph is found or the graph size is larger than
max size, the graph embedding is followed by a fully connected
layer for decomposer selection and the graph is then decomposed by
the selected decomposer. After all graphs are decomposed, a color
recovery process is executed to get the final layout decomposition
results.

B. Graph Embedding Neural Network
Graph embedding neural network is one of the most critical parts
in our framework since the graph embedding obtained by the neural
network is the basis for every module. Considering that the simplified
graph is heterogeneous, which contains both conflict and stitch edges,
we applied Relational Graph Convolutional Networks (RGCN) sim-
ilar to [18] to obtain the graph embedding. The process for graph
embedding is shown in Fig. 3. The original layout is transformed
into multiple heterogeneous graphs by graph simplification and stitch
insertion. Those simplified graphs are the input of the model and the
model is composed of two neural network layers. For each node vi
in a graph G = {V,E} , E = {Ec, Es}, the node representation
u

(l+1)
i ∈ RD(l+1)

at the (l + 1)th layer of the neural network can
be calculated by the following formula:

u
(l+1)
i = ReLU

∑
e∈E

∑
j∈Ne

i

W (l)
e u

(l)
j + u

(l)
i

 , (2)

where D(l) is the dimension of node representation at the lth layer,
W

(l)
e ∈ RD(l+1)×D(l)

is a learnable weight matrix of edge type e ∈
E and Ne

i denotes the set of neighbor nodes of node vi connected
by e. Intuitively, RGCN specified in Equation (2) works like the
classical GCN, as both neural network layers contain two phases,
aggregation and encoding. The difference is that edges in GCN share
the same learnable weight in each layer on the encoding phase while
only edges in the same edge type share the weight matrix for RGCN,
which means that the message integration for different kinds of edges
is independent. One central issue resulted from the different weight
matrixes strategy is that the number of parameters rapidly grows
with the number of the edge categories in the graph. Also, this kind
of strategy can easily lead to overfitting due to a large number of
parameters. The issue is solved by regularization of weight and we
adopt a basis decomposition [18], in which each weight matrix W

(l)
e

is a linear combination of basis transformations V (l) and defined by:

W (l)
e =

B∑
b=1

δ
(l)
rb V

(l)
b , (3)

where V
(l)
b ∈ RD(l+1)×D(l)

is one of the multiple basis transforma-
tions and δ(l)rb is the learnable coefficient.

In our implementation, we also adopt widely-used ReLU as the
activation function, the input feature of node vi is defined as:

u
(0)
i =

∑
j∈Ni

I{ei,j∈Ec} + αI{ei,j∈Es}, (4)

where I{·} is an indicator function and α = −0.1 is a user-
defined parameter following the general stitch cost. After obtaining
the node embeddings by RGCN model, we calculate the graph
embedding by the summation of the node embeddings considering
that graph complexity influences the decomposition quality of EC-
based decomposer, i.e., h =

∑
i∈V u

(out)
i , where u

(out)
i is the node

Algorithm 1 Graph Library Construction

Require: max size → Maximal graph size.
Ensure: L → The isomorphism-free library of valid graphs;
1: L← {};
2: Sp ← Generate graphs following method in [19];
3: Sp ← Remove invalid Graphs in Sp;
4: S ← Enumerate graphs containing stitches from graphs in Sp;
5: for G ∈ S do
6: if G satisfies layout graph rules then
7: h← normalize(RGCN(G));
8: Lh ← Extract graph embeddings stored in the library;
9: if max(Lh × h) < 1 then

10: Decompose G with ILP-based decomposer;
11: Insert G into L;
12: end if
13: end if
14: end for

embedding of node vi.

C. Graph Library Construction
Generally speaking, it is possible to enumerate all the valid graphs
under the size constraint such that we can build up a graph library to
accelerate decomposition by simply matching the graph with graphs
in the library and collect the coloring information stored in the
library.

Previous work [14] constructed a graph library that contains all
homogeneous graphs (23 in total) with node number less than seven
following the algorithm described in [19], [20]. However, the graph
in the previous library does not contain stitch edge, which means
that one heuristic stitch insertion and coloring method should be
used if the no-stitch graph is not colorable. Therefore, we propose
an isomorphism-free heterogeneous graph library construction algo-
rithm that contains all the possible graphs with both stitch edges and
conflict edges.

We first define the target heterogeneous graph as G = {V,E},
where V,E are the node set and the edge set respectively. Further-
more, we define a corresponding parent graph Gp = {V p, Ep},
which is the no-stitch form of G by merging nodes connected by
stitch edges. Different from the general 2-connected graph described
in [19], the graph transformed by circuit layout has some specific
rules, especially after stitch insertion. The rules are stated as follows:

• Gp is a 3-connected graph instead of 2-connected.
• The degree of each node in G is at least two.
• One node pair {u, v} cannot be connected if u, v are in the

stitch relation. Stitch relation of two nodes means that there is
a path connecting them and only go through stitch edges with
length larger than one.

• The neighbors connected by conflict edge cannot be totally the
same for two nodes in stitch relation.

The pseudocode of our library construction algorithm is illustrated
in Algorithm 1. Firstly, we enumerate Gp by the method in [19]
(line 2), which generates isomorphism-free 2-connected graph set
and removes all graphs which are not 3-connected (line 3). Then for
each Gp, we enumerate valid G which satisfies the size constraint
and all the rules above by splitting nodes in Gp and insert stitch edges
(lines 4–6). Note that there may be multiple isomorphic graphs in
the enumeration of G such that we use graph embedding to avoid
isomorphism. Specifically, every time when the enumerated G is
going to put into the library, G will be fed into the RGCN model
(line 7) and obtain a corresponding normalized graph embedding
h ∈ RD , where D is the dimension of the graph embedding. Then

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 08,2020 at 09:57:36 UTC from IEEE Xplore. Restrictions apply.

…
Graph simplification

& stitch insertion

Stitch edge Conflict edge

Node
Embedding

Graph
Embedding

RGCNDate Preprocessing

Sum++

Fig. 3 Overview of the process for graph embedding

the normalized graph embeddings Lh ∈ Rk×D stored in the library
are extracted (line 8) and a vector-matrix multiplication is performed
i.e., m ∈ Rk = Lh×h, where k is the number of graphs stored in
the library temporarily. Then whether there is an isomorphic graph in
the library or not is determined by checking the maximum element
in m (line 9) because two unit vectors are equal if and only if their
product is 1. The idea is based on the fact that a GCN-based model is
insensitive to the node order, which means that the graph embeddings
of all isomorphic graphs by a GCN-based model are totally the
same. After isomorphism determination, G won’t be inserted into
the library if there is an isomorphic graph. Otherwise, G will be
decomposed by ILP-based decomposer for optimal solution (line 10),
then graph G with its optimal coloring result, corresponding graph
embedding and node embeddings will be stored in the library (line
11).

D. Graph Matching and Decomposer Selection

1) Graph Matching
When the graph embedding is obtained by our model and the

graph size is under the limitation, we directly match the graph with
graphs in the library. We use the obtained graph embedding to find
isomorphic graphs in the library, then we use the corresponding node
embeddings to find the node-to-node mapping and return the solution
directly.

To illustrate the process clearly, we provide a simple example and
explain the details step by step. The graph library L in this example
is composed of three graphs, in which each graph has four nodes
and the dimension of graph embedding is two. The library stores all
information of graphs needed by our framework including its node
embeddings Lu ∈ R3×4×2, graph embeddings Lh ∈ R3×2 and
optimal solutions Ls ∈ R4×3:

Lh =

2
4

0.6 0.8
0.6 �0.8
1 0

3
5

<latexit sha1_base64="JYkWw4o7oCv27HmvqzehlLqZqvQ=">AAACk3icbVFdS+NAFJ1EV1131eiyT74MFkUES1KhFkQs6oMPCgpbLTSlTCa37dDJJM5Mli0hf2h/zr7tv3GSRqzVAzNz5tx75+PcIOFMadf9b9lLy19WVte+rn/7vrG55WzvPKo4lRQ6NOax7AZEAWcCOpppDt1EAokCDk/B5KqIP/0GqVgsfulpAv2IjAQbMkq0kQbOXz+AERMZPKelcpSvYwM/iHmoppFZMj8iekwJz27zfJCNc3yOq5yyMjBhyf7M6gq49SY+MHML+/6CeLygemaY1FfJBxG+nVfu5t41cGpu3S2BPxKvIjVU4X7g/PPDmKYRCE05UarnuYnuZ0RqRjmYC1IFCaETMoKeoYJEoPpZ6WmO940S4mEszRAal+p8RUYiVRhkMgt/1GKsED+L9VI9bPUzJpJUg6Czi4YpxzrGRYNwyCRQzaeGECqZeSumYyIJ1aaNhQne4pc/ksdG3TupNx4atfZlZcca2kV76BB56BS10Q26Rx1ELcdqWhdW2/5pn9mX9vUs1baqmh/oHey7F0KTux0=</latexit>

2
4

3
5

<latexit sha1_base64="0kN7gPPxBSaqDCGxxXsWqwjLCII=">AAACZXicdZE9T8MwEIad8FXKVyiIhQGLCoQYqqQMMCJYGItES6Umqhz3WiwcJ9gOogr9k2ysLPwNnDQSpcArW3r93Nlnn8OEM6Vd992yFxaXllcqq9W19Y3NLWe71lFxKim0acxj2Q2JAs4EtDXTHLqJBBKFHO7Dx+s8fv8MUrFY3OlxAkFERoINGSXaoL7z6ocwYiKDp7Qgp5MqNippGBEt2cuUFTrOx7Hv/yT/Ah/E4PuUYjVTqe/U3YZbCP82XmnqqFSr77z5g5imEQhNOVGq57mJDjIiNaMcTIFUQULoIxlBz1hBIlBBVnRpgo8MGeBhLM0UGhd0dkdGIqXGUWgyzYUf1Hwsh3/FeqkeXgQZE0mqQdBpoWHKsY5x3nI8YBKo5mNjCJXM3BXTByIJ1eZj8iZ480/+bTrNhnfWaN4265dXZTsqaB8dohPkoXN0iW5QC7URRR9Wxdq2atanvWHv2nvTVNsq9+ygH7IPvgBDOqxm</latexit>

2
4

3
5

<latexit sha1_base64="0kN7gPPxBSaqDCGxxXsWqwjLCII=">AAACZXicdZE9T8MwEIad8FXKVyiIhQGLCoQYqqQMMCJYGItES6Umqhz3WiwcJ9gOogr9k2ysLPwNnDQSpcArW3r93Nlnn8OEM6Vd992yFxaXllcqq9W19Y3NLWe71lFxKim0acxj2Q2JAs4EtDXTHLqJBBKFHO7Dx+s8fv8MUrFY3OlxAkFERoINGSXaoL7z6ocwYiKDp7Qgp5MqNippGBEt2cuUFTrOx7Hv/yT/Ah/E4PuUYjVTqe/U3YZbCP82XmnqqFSr77z5g5imEQhNOVGq57mJDjIiNaMcTIFUQULoIxlBz1hBIlBBVnRpgo8MGeBhLM0UGhd0dkdGIqXGUWgyzYUf1Hwsh3/FeqkeXgQZE0mqQdBpoWHKsY5x3nI8YBKo5mNjCJXM3BXTByIJ1eZj8iZ480/+bTrNhnfWaN4265dXZTsqaB8dohPkoXN0iW5QC7URRR9Wxdq2atanvWHv2nvTVNsq9+ygH7IPvgBDOqxm</latexit>

2
664

0.4 0.4
0.3 �1.0
0.1 0.6
�0.2 0.8

3
775

<latexit sha1_base64="Jd69Ao5ci90sg5fHZCXyJbEMVb4=">AAACh3icbZFdS8MwFIbT+v1d9dKb4FBEsLab6C79uPFSwbnBOkaanc1gmtYkFUfxr/ijvPPfmHYVu+kLCW+ec8I5OQkTzpT2vC/LnptfWFxaXlldW9/Y3HK2dx5VnEoKLRrzWHZCooAzAS3NNIdOIoFEIYd2+HyTx9uvIBWLxYMeJ9CLyEiwIaNEG9R3PoIQRkxk8JIW5Ph9FRuVNIyIluxtwnJ57hk+LPYgqMCGgSe+601Tv0g9r8ITz60XtPlDAxCD3zrFqdJL36l5rlcI/zV+aWqo1F3f+QwGMU0jEJpyolTX9xLdy4jUjHIwBVIFCaHPZARdYwWJQPWyYo7v+MCQAR7G0iyhcUGrNzISKTWOQpNpGn5Ss7Ec/hfrpnrY7GVMJKkGQSeFhinHOsb5p+ABk0A1HxtDqGSmV0yfiCRUm6/Lh+DPPvmveay7fsOt39drl9flOJbRHtpHR8hHF+gS3aI71ELUmreOrYZ1Zq/Yp/a53Zyk2lZ5ZxdNyb76BoESsec=</latexit>

Lu =
<latexit sha1_base64="7qqnCK++LaDFwz+AJGUQyd4ma9w=">AAACLXicbVDLSgMxFM3UV62vqks3wSKIizJTF7oRirpw4aKCfUCnlEzmtg3NZMYkI5RhfsiNvyKCi4q49TfMtF3U1gMhh3Pv4d57vIgzpW17bOVWVtfWN/Kbha3tnd294v5BQ4WxpFCnIQ9lyyMKOBNQ10xzaEUSSOBxaHrDm6zefAapWCge9SiCTkD6gvUYJdpI3eKt60GfiQSe4olylhawgeuF3FejwHyJGxA9oIQn92naTeL0quCC8Ocd3WLJLtsT4GXizEgJzVDrFt9dP6RxAEJTTpRqO3akOwmRmlEOacGNFUSEDkkf2oYKEoDqJJNrU3xiFB/3Qmme0HiizjsSEqhsddOZba4Wa5n4X60d695lJ2EiijUIOh3UiznWIc6iwz6TQDUfGUKoZGZXTAdEEqpNwFkIzuLJy6RRKTvn5cpDpVS9nsWRR0foGJ0iB12gKrpDNVRHFL2gNzRGn9ar9WF9Wd/T1pw18xyiP7B+fgGy9KkF</latexit>

Ls =

2
664

1 1 0
2 1 1
0 2 0
1 0 2

3
775

<latexit sha1_base64="1wkBTUrq4BZtoGZEcKUorLLRH7M=">AAACqHicbVFdS8MwFE3r9/fUR1+CYyI+jLY+6Isg+iLowwTnJusYaXo3w9K0Jqk4Sn+b/8E3/41pV3ROL4ScnHMPNzkJEs6UdpxPy15YXFpeWV1b39jc2t6p7e49qjiVFNo05rHsBkQBZwLammkO3UQCiQIOnWB8XeidV5CKxeJBTxLoR2Qk2JBRog01qL37AYyYyOAlLZmTfB1j7AcxD9UkMlvmR0Q/U8KzuzwfZCrHF7howZUxMLJkb6WtLBcflcvBvv9NehXpzpKOIbz5zqm1ECrSBxH+TClPM5cd1OpO0ykL/wVuBeqoqtag9uGHMU0jEJpyolTPdRLdz4jUjHIwA1IFCaFjMoKegYJEoPpZGXSOG4YJ8TCWZgmNS3bWkZFIFbGZziI1Na8V5H9aL9XD837GRJJqEHQ6aJhyrGNc/BoOmQSq+cQAQiUzd8X0mUhCtfnbIgR3/sl/waPXdE+b3r1Xv7yq4lhFB+gQHSMXnaFLdINaqI2o1bBurQerbZ/YLbtjP01bbavy7KNfZQdfYdO+4w==</latexit>

Different colors represent different graphs in the library. Take a
target graph G with four nodes for example, we use RGCN model
to obtain the corresponding node embedding u ∈ R4×2 and graph
embedding h ∈ R2, where h =

∑
i ui:

u =

0.3 −1.0
−0.2 0.8
0.4 0.4
0.1 0.6

 ,h =

[
0.6
0.8

]
. (5)

We first multiply the graph embedding h with graph embeddings
Lh in the library i.e., m ∈ R3 = Lh × h:

2
4

0.6 0.8
0.6 �0.8
1 0

3
5

<latexit sha1_base64="XuMuyQo6NjzAPxc1JO11cXH/Mfg=">AAACb3icbZFdS8MwFIbT+jW/p154oUhwKCpY2gm6y6E3Xio4N1jHSLOzLZimNUnFUXbrD/TO/+CN/8C0q6jTFxLePOckJzkJYs6Udt03y56ZnZtfKC0uLa+srq2XNzbvVZRICg0a8Ui2AqKAMwENzTSHViyBhAGHZvBwlcWbTyAVi8SdHsXQCclAsD6jRBvULb/4AQyYSOExycnJeAkbFTQIiZbsecIyuc45PjRzDfv+FDydop4ZJvUL+SB63+flqx81u+WK67i58F/jFaaCCt10y69+L6JJCEJTTpRqe26sOymRmlEOpkCiICb0gQygbawgIahOmvdrjA8M6eF+JM0QGuf0546UhEqNwsBkmgsP1XQsg//F2onu1zopE3GiQdBJoX7CsY5w1nzcYxKo5iNjCJXM3BXTIZGEavNFWRO86Sf/NfdVxztzqrfVSv2yaEcJ7aB9dIQ8dIHq6BrdoAai6N3atHasXevD3rb3bDxJta1izxb6Jfv4EzBErug=</latexit>

Lh
<latexit sha1_base64="ldDaofWwWFUHBQwtGXkwcXVR01w=">AAACBXicbVC7TsMwFHXKq5RXgBGGiBaJqUrKAGMFCwNDkehDaqLIcZzWqmNHtoNURVlY+BUWBhBi5R/Y+BucNgO0XMny0Tn36p57goQSqWz726isrK6tb1Q3a1vbO7t75v5BT/JUINxFnHIxCKDElDDcVURRPEgEhnFAcT+YXBd6/wELSTi7V9MEezEcMRIRBJWmfPO44QachnIa6y9zY6jGCNLsNs/9ccM363bTnpW1DJwS1EFZHd/8ckOO0hgzhSiUcujYifIyKBRBFOc1N5U4gWgCR3ioIYMxll42uyK3TjUTWhEX+jFlzdjfExmMZeFTdxY25aJWkP9pw1RFl15GWJIqzNB8UZRSS3GriMQKicBI0akGEAmivVpoDAVESgdX0yE4iycvg16r6Zw3W3etevuqjKMKjsAJOAMOuABtcAM6oAsQeATP4BW8GU/Gi/FufMxbK0Y5cwj+lPH5A/HPmNk=</latexit>

⇥<latexit sha1_base64="NeFMiMMKkpgpRZEHWCSOGAS7o2Q=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbtYaBm0sYxgPiA5wt5mL1myt3fuzgnhyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTqWHIuKm0i+V3ao7B1klXk7KkKPRL331BjFLI66QSWpM13MT9DOqUTDJp8VeanhC2ZgOeddSRe0WP5vfOyXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2fNkIDRnKCeWUKaFvZWwEdWUoY2oaEPwll9eJa1a1bus1u5r5fpNHkcBTuEMLsCDK6jDHTSgCQwkPMMrvDmPzovz7nwsWtecfOYE/sD5/AFxYI+S</latexit>

0.6
0.8

�

<latexit sha1_base64="17ZZKcsiDcDwrMRg4s4+klCt6bg=">AAACS3icbVBNTwIxFOyiKOIX6tFLIzExHsguJsqR6MUjJvKRACHd8oCGbndtu0ay4f958eLNP+HFg8Z4sLtsAoKTNJk3b95rO27AmdK2/WZl1tazG5u5rfz2zu7efuHgsKH8UFKoU5/7suUSBZwJqGumObQCCcRzOTTd8U3cbz6CVMwX93oSQNcjQ8EGjBJtpF7B7bgwZCKChzBRzqd5bJCqrke0ZE8zLYZdusSdzkJZmdlB9OfmpJov7BWKdslOgFeJk5IiSlHrFV47fZ+GHghNOVGq7diB7kZEakY5mP2hgoDQMRlC21BBPFDdKMliik+N0scDX5ojNE7UxYmIeEpNPNc4zXtHarkXi//12qEeVLoRE0GoQdDZRYOQY+3jOFjcZxKo5hNDCJXMvBXTEZGEahN/3oTgLH95lTTKJeeiVL4rF6vXaRw5dIxO0Bly0BWqoltUQ3VE0TN6R5/oy3qxPqxv62dmzVjpzBH6g0z2Fwl8rYw=</latexit>

h
<latexit sha1_base64="XqQhRQIkAkoy3dynju0NjT40Fb0=">AAAB+XicbVDNTgIxGPwW/xD/Vj16aQQTT2QXD3okevGIiSAJbEi3W6Ch227aLgnZ8CZePGiMV9/Em29jF/ag4CRNJzPfl04nTDjTxvO+ndLG5tb2Tnm3srd/cHjkHp90tEwVoW0iuVTdEGvKmaBtwwyn3URRHIecPoWTu9x/mlKlmRSPZpbQIMYjwYaMYGOlgevW+qHkkZ7F9srG89rArXp1bwG0TvyCVKFAa+B+9SNJ0pgKQzjWuud7iQkyrAwjnM4r/VTTBJMJHtGepQLHVAfZIvkcXVglQkOp7BEGLdTfGxmOdZ7NTsbYjPWql4v/eb3UDG+CjIkkNVSQ5UPDlCMjUV4DipiixPCZJZgoZrMiMsYKE2PLqtgS/NUvr5NOo+5f1RsPjWrztqijDGdwDpfgwzU04R5a0AYCU3iGV3hzMufFeXc+lqMlp9g5hT9wPn8AcrqTiA==</latexit>

=<latexit sha1_base64="lqqeJEW3N8u2zqTFjGDYdvYQ9vU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQhshaGMZ0XxAcoS9zV6yZG/v2J0TQshPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00kP5utwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirV+2qpdpPFkYcTOIVz8OASanAHdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fRPmNHw==</latexit>

2
4

1
�0.28
0.6

3
5

<latexit sha1_base64="EdtKn1AdEHe6a5MGYvUR9ZwrYcA=">AAACWnicbVHbSgMxEM2ul9681MubL8EiiOCyW0H7WPTFxwrWFtpSsum0BrPZbZIVy9Kf9EUEf0Uw3S62th4InDkzZzKZ+BFnSrvup2VvbG5t5/KFYmlnd2+/fHD4pMJYUmjSkIey7RMFnAloaqY5tCMJJPA5tPyXu1m+9QpSsVA86kkEvYCMBBsySrSR+uVx14cREwmM41S5mBaxQab6AdGSvc21GTzc7f4Gl65TrS0LrnM9d4MYLLxptOjfL1dcx02B14mXkQrK0OiX37uDkMYBCE05UarjuZHuJURqRjmY/rGCiNAXMoKOoYIEoHpJupopPjPKAA9DaY7QOFWXHQkJlJoEvqk08z6r1dxM/C/XifWw1kuYiGINgs4vGsYc6xDP9owHTALVfGIIoZKZWTF9JpJQbX6jaJbgrT55nTxVHe/KqT5UK/XbbB15dIJO0Tny0A2qo3vUQE1E0Qf6tratnPVl23bBLs1LbSvzHKE/sI9/AKmjq5k=</latexit>

m
<latexit sha1_base64="lx8Llyt9w164KPQuqg7GEr+x1to=">AAAB+XicbVDLTgIxFL2DL8TXqEs3E8HEFZnBhS6JblxiIkgCE9LpFGjoY9J2SMiEP3HjQmPc+ifu/Bs7MAsFT9L05Jx709MTJYxq4/vfTmljc2t7p7xb2ds/ODxyj086WqYKkzaWTKpuhDRhVJC2oYaRbqII4hEjT9HkLvefpkRpKsWjmSUk5Ggk6JBiZKw0cN1aP5Is1jNur4zPawO36tf9Bbx1EhSkCgVaA/erH0ucciIMZkjrXuAnJsyQMhQzMq/0U00ShCdoRHqWCsSJDrNF8rl3YZXYG0pljzDeQv29kSGu82x2kiMz1qteLv7n9VIzvAkzKpLUEIGXDw1T5hnp5TV4MVUEGzazBGFFbVYPj5FC2NiyKraEYPXL66TTqAdX9cZDo9q8LeoowxmcwyUEcA1NuIcWtAHDFJ7hFd6czHlx3p2P5WjJKXZO4Q+czx96WJON</latexit> =<latexit sha1_base64="lqqeJEW3N8u2zqTFjGDYdvYQ9vU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQhshaGMZ0XxAcoS9zV6yZG/v2J0TQshPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00kP5utwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirV+2qpdpPFkYcTOIVz8OASanAHdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fRPmNHw==</latexit>

Then the matched graph index i in the library is defined by:

i =

{
argmax(m), ifmax(m) = 1;

−1, otherwise,
(6)

where −1 means there is no isomorphic graph matched in the library
such that the graph matching process is terminated and redirected
to decomposer selection, otherwise, the ith node embedding in
the library is extracted and compared with the target graph’s node
embedding to get the final node-to-node mapping. This comparison
method is also based on the node order insensitivity of the GCN-
based model, if the input feature doesn’t contain any information
related to the node order such as a one-hot vector of the node
order, the final graph embedding is then order-invariant because the
message passing process is only related to the neighbors instead of
the node order. In this example, m[0] = 1 such that i = 0, which
means that the first node embedding Lu[0] is used to compare with
u.

The node-to-node mapping f is executed by comparing two node
embeddings and formulated by:

f(j) = k, if u[j] = Lu[i][k] for j, k in {0, . . . , |G| − 1}, (7)

where |G| means the number of nodes in the graph. In this example,
|G| is exactly 4 and f is then defined by: f({0, 1, 2, 3}) =
{1, 3, 0, 2}.

After f is found, the solution s can be matched quickly by:

s[j] = Ls[f(j)][i], for j in {0, . . . , |G| − 1}, (8)

so the final solution of G in this example is mapped as [2, 1, 1, 0].

2) MPL Decomposer selection

When the size is larger than the size limitation or no mapping
is found in the library, the graph embedding is used to select the
decomposer. Therefore, the decomposer selector can be regarded
as a 2-class classifier and simply modeled by a summation of one
trainable weight matrix Ws ∈ R2×D and a bias vector bs ∈ R2

combined with argmax function, which can be formulated as:

y = argmax(Wsh+ bs), (9)

where h ∈ RD is the graph embedding obtained by RGCN model
with dimension D. The final decomposition result is then generated
by the selected decomposer.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 08,2020 at 09:57:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I Decomposition Cost Comparison

Circuit ILP SDP EC RGCN
st# cn# cost time (s) st# cn# cost time (s) st# cn# cost time (s) st# cn# cost time (s)

C432 4 0 0.4 0.486 4 0 0.4 0.016 4 0 0.4 0.005 4 0 0.4 0.007
C499 0 0 0 0.063 0 0 0 0.018 0 0 0 0.011 0 0 0 0.015
C880 7 0 0.7 0.135 7 0 0.7 0.021 7 0 0.7 0.010 7 0 0.7 0.014
C1355 3 0 0.3 0.121 3 0 0.3 0.024 3 0 0.3 0.011 3 0 0.3 0.015
C1908 1 0 0.1 0.129 1 0 0.1 0.024 1 0 0.1 0.017 1 0 0.1 0.031
C2670 6 0 0.6 0.158 6 0 0.6 0.044 6 0 0.6 0.035 6 0 0.6 0.046
C3540 8 1 1.8 0.248 8 1 1.8 0.086 8 1 1.8 0.032 8 1 1.8 0.038
C5315 9 0 0.9 0.226 9 0 0.9 0.106 9 0 0.9 0.039 9 0 0.9 0.049
C6288 205 1 21.5 5.569 203 4 24.3 0.648 203 5 25.3 0.151 205 1 21.5 0.154
C7552 21 1 3.1 0.872 21 1 3.1 0.157 21 1 3.1 0.071 21 1 3.1 0.111
S1488 2 0 0.2 0.147 2 0 0.2 0.031 2 0 0.2 0.013 2 0 0.2 0.016
S38417 54 19 24.4 7.883 48 25 29.8 1.686 54 19 24.4 0.329 54 19 24.4 0.729
S35932 40 44 48 13.692 24 60 62.4 5.130 46 44 48.6 0.868 40 44 48 1.856
S38584 117 36 47.7 13.494 108 46 56.8 4.804 116 37 48.6 0.923 117 36 47.7 1.840
S15850 97 34 43.7 11.380 85 46 54.5 4.320 100 34 44 0.864 97 34 43.7 1.792
average 12.893 3.640 15.727 1.141 13.267 0.225 12.893 0.448

ratio 1.000 1.000 1.220 0.313 1.029 0.062 1.000 0.123

IV. EXPERIMENTAL RESULTS

The experiments are performed on the scaled-down and modified
ISCAS benchmarks, which are widely used in previous works [5],
[14], [15]. The framework is mainly implemented in Python with
PyTorch [21] and DGL [22] and integrated into the open-source
layout decomposition framework OpenMPL [17]. Fig. 2 specifies the
detailed task execution platform of the workflow. It should be noted
that our graph embedding as well as the whole framework is very
general that they can be naturally extended to other decomposition
tasks under different lithography constraints. We follow the same
settings in [5], [14], [15] on the minimum color space, where the
first ten cases are set to 120 nm and the last five cases are set to
100nm. The cost of stitch is set to 0.1 such that the decomposition
cost is calculated by cn#+0.1st#, mask number is set to 3 and the
graph simplification level in OpenMPL is 3. In the training phase of
our model, we concatenate the model with MPL decomposer selector
such that the cross-entropy loss function can be adopted. The label
of each simplified graph for training is set as 0 (ILP) if the cost by
ILP-based decomposer is smaller than EC-based decomposer and 1
(EC) for other cases. The RGCN model contains two layers whose
output dimensions are 32, 64 respectively such that the dimension of
graph embedding is 64. The training strategy follows the idea of K-
fold cross-validation, specifically, each time one of the 15 layouts in
the benchmark is used as the validation set and the other 14 layouts
are put together to form a training set. Therefore, there are 15 trained
models for 15 layouts following the same model configurations.
The layout is first preprocessed by graph simplification and stitch
insertion such that the dataset is composed of multiple graphs.
Considering that our dataset is significantly unbalanced since EC-
based decomposer is optimal and also the fastest in most cases, we
set the training epoch to 1 and use a weighted random sampling
strategy with weight ratio 300:1 to avoid overfitting. In the evaluation
phase, the simplified graphs of the target layout are fed as a batch
to the RGCN model for efficient inference. All the experiments
are conducted on an Intel Core 2.9 GHz Linux machine with one
NVIDIA TITAN Xp GPU.

In the first experiment, we compare the effectiveness of our
proposed RGCN model with conventional GCN model. The classical
GCN model only supports homogeneous graphs while there are two
kinds of edges in this task. Therefore, we slightly modify the message
passing function by multiplying the edge weight αe for different edge

Label
ILP EC

Predicted
ILP 13 682
EC 0 5900

Recall 100.0%
F1-score 0.0367

(a) Proposed RGCN

Label
ILP EC

Predicted
ILP 2 244
EC 11 6338

Recall 15.4%
F1-score 0.0154

(b) Conventional GCN

Fig. 4 F1 score comparison of (a) RGCN (b) GCN.

types:

u
(l+1)
i = ReLU

∑
e∈E

∑
j∈Ne

i

αeW
(l)u

(l)
j + u

(l)
i

 , (10)

where αe is 1 for conflict edge and -0.1 for stitch edge following the
weighted cost setting, the negative sign is due to the fact the stitch
edge and conflict edge play different roles in decomposition: nodes
connected by a conflict edge are assigned different colors while stitch
edge indicates same color. The result is illustrated by the confusion
matrix shown in Fig. 4, where each row contains the number of
graphs selected to be decomposed by the corresponding decomposer
while each column contains the number of graphs labeled by the
corresponding decomposer. For example, the element (0,0) in the
confusion matrix indicates the number of graphs which is labeled
as positive (ILP) and also selected to be decomposed by ILP-
based decomposer. In the experiment, we use two more metrics,
recall and F1 score. Recall is used to measure the proportion of
ILP-labeled graphs that are correctly identified and influences the
decomposition quality directly. F1-score is a general metric for the
model’s accuracy. According to Fig. 4, we can see that the F1-score
of our model is more than 2× of that in conventional GCN, which
demonstrates the powerful representation capability of our model
compared with conventional GCN. Another important point is that
our model classifies all the graphs labeled as positive correctly such
that our recall achieves 100% while conventional GCN only classifies
15.4% correctly.

In the second experiment, we compare our results with state-
of-the-art decomposers. All the decomposers are implemented and
measured in OpenMPL under one thread such that we can keep
the preprocess procedure the same and compare the results without
potential bias due to different simplification method or stitch inser-
tion techniques. The results can be found in TABLE I, where the
column “time (s)” is the decomposition runtime regardless of graph

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 08,2020 at 09:57:36 UTC from IEEE Xplore. Restrictions apply.

2 4 6 8
0

10

20

30

40

50

Number of theads

D
ec

om
po

si
tio

n
tim

e
(s

)
tns vs. areaRGCN EC ILP

(a)

1.63%

GCN Inference

96.23%

ILP/EC Decomposer

2.14%

Graph Matching

(b)

Fig. 5 (a) Scalability analysis on different threads; (b) Runtime
breakdown of our framework.

simplification and stitch insertion for better comparison. As expected,
there is no one decomposer which can dominate others. EC-based
decomposer outperforms others on runtime while causing some
additional costs. ILP-based decomposer obtains the optimal results
while the runtime is significantly worse than others. SDP-based
decomposer shows a runtime improvement compared with ILP-based
decomposer but cannot compete with EC-based decomposer on both
runtime and quality. Our RGCN-based framework also obtains the
optimal results in all cases since the selector selects all graphs labeled
as ILP correctly and such avoid optimality loss. The average runtime
is reduced to 12.3% compared with ILP-based decomposer because
of the efficient graph matching technique and EC-based decomposer
which is selected as the decomposer in most cases.

In the third experiment, we analyze the runtime of our framework.
We first measure the runtime of different decomposers under different
threads. The result is shown in Fig. 5(a), where each method is
executed under different threads and the decomposition runtime is the
total runtime of 15 layouts in the benchmark. According to the figure,
EC-based decomposer demonstrates impressive efficiency under all
threads. Despite that ILP-based decomposer can achieve optimal
results, the runtime is substantially longer than other decomposers.
The proposed RGCN model can achieve comparable decomposition
quality to ILP-based decomposer, with a similar runtime to EC-based
decomposer. We further compare the runtime distribution in our
framework. The decomposition runtime of our framework is mainly
composed of three parts: RGCN inference, Graph matching and the
decomposition runtime by the selected decomposer. Note that the
decomposer selection is counted in the RGCN inference since the 2-
class classifier is integrated into the RGCN model for fast inference.
Fig. 5(b) shows the result, where the metric is the total runtime
of 15 layouts as before. From the figure, we can clearly see that
the decomposition runtime by the selected decomposer is the major
bottleneck and occupies 96.23% of the total runtime, and the RGCN
inference runtime is even slightly faster than graph matching due
to the batched graph technique we used in the evaluation phase.
The result indicates that the RGCN inference and graph matching
runtime of our framework are actually trivial such that our method
has strong scalability and can be applied to select other more efficient
decomposers in the future.

V. CONCLUSION

In this paper, we use an RGCN model to obtain graph embeddings,
which are used to build the isomorphism-free graph library, match
graphs in the library and adaptively select decomposer. The results
show that the obtained graph embeddings have powerful repre-
sentation capability and demonstrate an excellent balance between

decomposition quality and efficiency. The future work can be the
construction of more complicated libraries for efficient matching.

VI. ACKNOWLEDGMENT

This work is partially supported by Cadence Design Systems,
NVIDIA, and The Research Grants Council of Hong Kong SAR
(No. CUHK24209017).

REFERENCES

[1] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with
emerging nanolithography,” IEEE TCAD, vol. 32, no. 10, pp. 1453–
1472, 2013.

[2] Y. Xu and C. Chu, “GREMA: graph reduction based efficient mask
assignment for double patterning technology,” in Proc. ICCAD, 2009,
pp. 601–606.

[3] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition
approaches for double patterning lithography,” IEEE TCAD, vol. 29, pp.
939–952, June 2010.

[4] K. Yuan, J.-S. Yang, and D. Z. Pan, “Double patterning layout decompo-
sition for simultaneous conflict and stitch minimization,” IEEE TCAD,
vol. 29, no. 2, pp. 185–196, Feb. 2010.

[5] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposition for
triple patterning lithography,” IEEE TCAD, vol. 34, no. 3, pp. 433–446,
March 2015.

[6] B. Yu, Y.-H. Lin, G. Luk-Pat, D. Ding, K. Lucas, and D. Z. Pan, “A high-
performance triple patterning layout decomposer with balanced density,”
in Proc. ICCAD, 2013, pp. 163–169.

[7] B. Yu, S. Roy, J.-R. Gao, and D. Z. Pan, “Triple patterning lithography
layout decomposition using end-cutting,” JM3, vol. 14, no. 1, pp.
011 002–011 002, 2015.

[8] Y. Lin, X. Xu, B. Yu, R. Baldick, and D. Z. Pan, “Triple/quadruple
patterning layout decomposition via linear programming and iterative
rounding,” JM3, vol. 16, no. 2, 2017.

[9] X. Li, Z. Zhu, and W. Zhu, “Discrete relaxation method for triple
patterning lithography layout decomposition,” IEEE TC, vol. 66, no. 2,
pp. 285–298, 2017.

[10] S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decomposi-
tion algorithm for triple patterning lithography,” IEEE TCAD, vol. 33,
no. 3, pp. 397–408, March 2014.

[11] H.-A. Chien, S.-Y. Han, Y.-H. Chen, and T.-C. Wang, “A cell-based
row-structure layout decomposer for triple patterning lithography,” in
Proc. ISPD, 2015, pp. 67–74.

[12] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. D. F. Wong, “A polynomial
time triple patterning algorithm for cell based row-structure layout,” in
Proc. ICCAD, 2012, pp. 57–64.

[13] J. Kuang and E. F. Y. Young, “Fixed-parameter tractable algorithms for
optimal layout decomposition and beyond,” in Proc. DAC, 2017, pp.
61:1–61:6.

[14] ——, “An efficient layout decomposition approach for triple patterning
lithography,” in Proc. DAC, 2013, pp. 69:1–69:6.

[15] I. H.-R. Jiang and H.-Y. Chang, “Multiple patterning layout decompo-
sition considering complex coloring rules and density balancing,” IEEE
TCAD, vol. 36, no. 12, pp. 2080–2092, 2017.

[16] E. Bengoetxea, “Inexact graph matching using estimation of distribu-
tion algorithms,” Ph.D. dissertation, Ecole Nationale Supérieure des
Télécommunications, Paris, France, Dec 2002.

[17] W. Li, Y. Ma, Q. Sun, Y. Lin, I. H.-R. Jiang, B. Yu, and D. Z. Pan,
“OpenMPL: An open source layout decomposer,” in Proc. ASICON,
2019.

[18] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference. Springer, 2018,
pp. 593–607.

[19] D. Stolee, “Isomorph-free generation of 2-connected graphs with appli-
cations,” arXiv preprint arXiv:1104.5261, 2011.

[20] B. D. McKay, “Isomorph-free exhaustive generation,” Journal of Algo-
rithms, vol. 26, no. 2, pp. 306–324, 1998.

[21] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NeurIPS Autodiff Workshop, 2017.

[22] M. Wang, L. Yu, D. Zheng et al., “Deep graph library: Towards
efficient and scalable deep learning on graphs,” ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 08,2020 at 09:57:36 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

