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Abstract—Multiple patterning lithography has been widely adopted in
advanced technology nodes of VLSI manufacturing. As a key step in the
design flow, multiple patterning layout decomposition (MPLD) is critical
to design closure. Due to the NP-hardness of the general decomposi-
tion problem, various efficient algorithms have been proposed with high
quality solutions. However, with increasingly complicated design flow and
peripheral processing steps, developing a high-quality layout decomposer
becomes more and more difficult, slowing down the further advancement
in this field. This paper presents OpenMPL [1], an open-source layout
decomposition framework, with well-separated peripheral processing and
the core solving steps. We demonstrate the flexibility of the framework
with efficient implementations of various state-of-the-art algorithms, which
enable us to reproduce most of the recent results on widely-recognized
benchmarks. We believe OpenMPL can pave the road for developing layout
decomposition engines and stimulate further researches on this problem.

I. INTRODUCTION

Multiple patterning layout decomposition (MPLD) has been adopted to
improve the lithography resolution. The key idea of MPLD is to assign
features that are close to each other to different masks, such that within
each mask, the features are far away enough to be printed with existing
lithography techniques. MPLD can be divided into double patterning
layout decomposition (DPLD), triple patterning layout decomposition
(TPLD) and quadruple patterning layout decomposition (QPLD) ac-
cording to the number of masks. This problem is difficult since it is a
variation of the graph coloring problem, which is NP-hard for k ≥ 3,
where k is the number of masks.

Fig. 1 is an example of TPLD, where three colors represent cor-
responding masks. Different from classical graph coloring problem,
the layout decomposition problem has several unique characteristics. 1)
Stitch: a polygon feature is allowed to be split into multiple overlapping
segments to resolve coloring conflicts, as shown in the dashed edge
of Fig. 1(b). 2) Special patterns: circuit layout follows some kinds
of patterns due to the design styles, e.g., the alternative power and
ground lines that may help to simplify the graph. 3) Complex rules:
besides the widely-adopted spacing constraint for the same color, there
are also other rules like the different color spacing constraints [2]
related to the ordering of masks, and the pre-colored constraints where
the colors of some features are pre-determined before decomposition.
These characteristics make the problem special and require customized
algorithms to solve it effectively and efficiently.

To achieve high efficiency and meanwhile maintain high solution
quality, a variety of decomposition algorithms have been proposed.
These algorithms can be roughly categorized into three types: mathe-
matical programming and relaxation, graph-theoretical approaches and
search-based approaches [3], [4]. Mathematical programming is to solve
MPLD problem by formulating it into a mathematical programming
model, such as integer linear programming (ILP) for DPLD [5]–[7] and
TPLD [8]–[10]. Due to the NP-hardness, relaxation techniques such as
semidefinite programming (SDP) [8], linear programming (LP) [11]
and a discrete relaxation method [12] are also proposed based on ILP.
Another category is to directly perform color assignment based on a set
of graph-theoretical algorithms, e.g., the maximal independent set (MIS)
[13], the shortest-path [14], [15], and the fixed-parameter tractable
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Fig. 1 An example of TPLD with stitches. (a) The constructed layout
graph without stitch candidates insertion, which is actually a 4-clique
and therefore not 3-colorable; (b) The constructed layout graph with
stitch candidates insertion. Two stitch candidates are introduced and the
original 4-clique is dismissed; (c) Coloring on the layout graph with
stitch candidates insertion. No conflict in the final coloring result with
only one stitch inserted; (d) The final decomposed layout with three
masks (each color corresponds to one mask), the cost is 0.1 following
Equation (1).

(FPT) [16] algorithms. Search-based algorithms follow a divide-and-
conquer principle with each sub-graph containing less than 20 nodes.
Then a search procedure is applied to find the optimal solutions
for small sub-graphs [8], [13], [17]–[21]. Besides the researches on
single layout decomposition stage, recent work [22] pioneers a new
direction which integrates layout decomposition and mask optimization
seamlessly, achieving compelling results from a global view of the
solution space.

Besides the innovations to the core algorithms, many graph simplifi-
cation techniques have been developed to reduce the problem size, such
as independent component computation (ICC) [8], hide small degrees
[8], [18], biconnected component analysis [6], [7], sub-K4 structure
merging for TPLD [11].

To reduce the repeated effort in reimplementation of the whole
decomposition framework and lower the bar of the research on MPLD,
in this paper, we present a general and open-source framework,
OpenMPL, as an open platform for developing MPLD algorithms. We
carefully design the software architectures and APIs to decouple the
innovations on the core optimization steps. For example, one can focus
on developing novel graph simplification or decomposition techniques
without worrying about the peripheral processing issues as the platform
provides clean and well-defined APIs for kernel optimization engines.
We also provide efficient implementations of widely-adopted graph
simplification techniques and state-of-the-art layout decomposition al-
gorithms which have been introduced above. We believe that this open
platform paves the road for the development of MPLD engines and will
stimulate more researches in the near future, eventually contributing to
better manufacturability in advanced technology nodes.
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Fig. 2 The workflow of OpenMPL.

II. THE OpenMPL FRAMEWORK

OpenMPL is a general framework offering various decomposition algo-
rithms and different simplification techniques. These methods are well
embedded into the framework with unified interfaces. The framework
operation flow is depicted in Fig. 2. Technical details are as follows.

A. Problem Formulation
Given an input layout specified by features in polygonal shapes, the
layout can be translated into an undirected layout graph G = (V,E),
where every node vi ∈ V corresponds to one feature in layout and
each edge eij ∈ E is used to characterize the relationships between
features. Considering conflict and stitch relationships, E is composed
of this two kinds of edges, denoted by E = {CE∪SE}, where SE is
the set of stitch edges and CE is the set of conflict edges. The MPLD
problem can be formulated as below:

min
x

∑
cij + α

∑
sij , (1a)

s.t. cij = (xi == xj), ∀eij ∈ CE, (1b)

sij = (xi 6= xj), ∀eij ∈ SE, (1c)

xi ∈ {0, 1, . . . , k}, ∀xi ∈ x, (1d)

where xi is a variable for the k available colors of the pattern vi, cij
is a binary variable representing conflict edge eij ∈ CE, sij stands for
stitch edge eij ∈ SE , α is a user-defined parameter and is set as 0.1
by default in our framework to assign relative importance between the
conflict cost and the stitch cost. If two nodes, xi and xj , within the
minimal coloring distance are assigned the same color (i.e. xi == xj),
then cij = 1. On the contrary, sij = 1 when two nodes connected by
stitch edge are assigned different color (i.e. xi 6= xj). The objective
function is to minimize weighted summation of the conflict number and
the stitch number.

B. Design Principles
OpenMPL is designed for end-users, developers and researchers as
a general platform for MPLD algorithms. Therefore, we emphasize
usability, efficiency, and extensibility during development. The core
design principles are highlighted as follows.

• Decoupled design stages. The implementation clearly separates
different optimization stages in Fig. 2 such that the interdepen-
dency between them is minimized. In this way, developers can
focus on verifying individual stages without worrying about cross-
stage impacts.

• Graphs for communications among kernel stages. After layout
graph construction, the graph simplification, decomposition solver,
and the simplified graph recovery stages use pure graphs as

input/output, without involving mask data. This design leads to
well-defined and highly separatable core algorithms, making the
framework highly extensible.

• Efficiency and generality for different mask data. As a mask
layer can be a contact layer or a metal layer, the processing
efficiency varies significantly for different types of layers. We
design a general mask database with separate processing routines
for contact layers and metal polygon layers for efficiency enabled
by C++ polymorphism, since contact layers can be processed in a
much simpler way.

C. Workflow and Functionalities
The workflow of OpenMPL is shown in Fig. 2. Firstly, one chip
layout information (GDS) file is loaded and transformed into a layout
graph, which is represented by a vector of rectangle pointers, where
the rectangles are defined in Boost. Secondly, a stitch insertion process
[23] is executed to generate a decomposed graph with stitches after
simple ICC simplification. Then the decomposed graph is simplified by
several simplification techniques, where some of them are implemented
in third-party library Limbo [24]. After simplification, a coloring solver
is called for each component in the decomposed graph to solve the
component coloring problem. Finally, our framework recovers nodes
removed in the simplification step and assigns legal color for each
removed node. In the following sub-sections, we are going to introduce
all of the functionalities in two crucial procedures of OpenMPL, layout
simplification and decomposition.

Layout graph simplification techniques can be used to reduce the
graph size and therefore reduce the computational complexity. We only
need to deal with the smaller graph without affecting the final result.
All of the four simplification techniques mentioned in Section I are
supported in our framework, including ICC, HIDE_SMALL_DEGREE,
BICONNECTED_COMPONENT and MERGE_SUBK4.
ICC is proposed based on the fact that there are many isolated clus-

ters in a real layout such that ICC can break down the layout graph into
several independent components. HIDE_SMALL_DEGREE temporarily
removes the nodes whose degree is less than the number of color options
in an iterative manner. BICONNECTED_COMPONENT simplifies the
layout graph by removing all the bridge vertices. MERGE_SUBK4
detects and merges specific structures whose number of edges is exactly
one less than four-clique structures and thus is only applicable for
TPLD. Different simplification techniques require different recovery
methods. However, those nodes which are shared among different
components may be assigned different colors after recovery. To tackle
this, color rotation is implemented in our framework.

Graph color assignment is the most crucial step in the flow, which
impacts the final coloring results directly. In graph color assignment,
simplified graph is provided and each vertex in the graph should be
assigned one color by specified algorithm. Users of our framework can
specify which algorithm is adopted and the number of colors available.
OpenMPL has supported all of the commonly-used algorithms in
layout decomposition. The methodologies are briefly introduced in the
following context.

• Integer Linear Programming: Solving Problem (1) is non-trivial.
A widely used method to solve this problem is integer linear
programming [5]–[8], which converts this problem into linear
programming by binary encoding of vertex colors and replacing
the color constraints with a set of inequality constraints. ILP can
be easily extended to solve different coloring problems, including
TPLD and QPLD. Our framework is based on the theory proposed
in [8]. We use Gurobi [25], Lemon [26] and CBC [27] as the ILP
solvers.

• Semidefinite Programming: The discrete integer programming
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solving process of Equation (1) is NP-hard, thus it may suffer
from run-time overhead for practical designs. As shown in [8],
[28], [29], the color assignment can be formulated as a vector
programming and then relaxed and solved by semi definite pro-
gramming, which can be solved in polynomial time. Given the
solutions of SDP, a mapping process is used to map the solutions
to coloring results. CSDP [30] is used as the SDP solver.

• Backtracking: Backtracking is a DFS fashion algorithm that is
used to find solutions with constraints in the whole solution space.
We also provide backtracking routine in OpenMPL. Though back-
tracking is widely used, its runtime performance is unsatisfactory
for complicated graphs. Therefore we use it as a sub-solver to
solve color assignment problem in simple sub-graphs .

• Dancing Links: Different from original dancing links and algo-
rithm X, dancing links based algorithm for MPLD problem [20]
concludes conflicts earlier by traversal in BFS manner, treating this
problem as an exact cover problem. In OpenMPL, this solver is
developed by ourselves instead of third-party libraries. We follow
the statement in [20] and build a classical dancing links data
structure in our implementation so that there are still much room
for optimization.

OpenMPL also supports decomposition algorithms like MIS, LP, etc,
which cannot solve the graph containing stitch edges while work well
on stitch-free graphs. Due to page limit, we leave the details on the
tool release page [1].

D. Additional Features
Some additional features are also supported for better usability, ef-
ficiency and extensibility. (1) OpenMPL supports multi-threading
operation by OpenMP [31] and users can specify the number of threads.
Graph components are solved in parallel and layout decomposition
algorithms also support multi-threading computations. (2) We can
identify all the possible positions of stitches through pattern projections
[8] in stitch insertion, which is one of the most critical steps to parse
a layout. One example of stitch is shown in Fig. 1. There are lots
of candidate positions for stitch insertion, and we only choose some
stitches from those candidates. One thing should be noted is that all
the coloring algorithms provided in the framework share the identical
stitch candidate generation procedure, which results in identical graph
simplification results regardless of coloring algorithms. (3) In practice,
a pattern in the layout may be a polygon or rectangle. Consequently,
the storage may vary from case to case. OpenMPL provides a shape-
friendly system considering this case and users can specify the shape,
POLYGON or RECTANGLE, to guarantee the performance to avoid
unnecessary calculations. For polygonal inputs, to simplify the storage
structure design and save space, OpenMPL firstly decomposes the
polygons to rectangles. After reading the whole input file, DFS is
utilized to find connected components and re-union rectangles into
polygons. For rectangle circuits, we directly store these patterns without
further operations.

III. EXPERIMENTAL RESULTS

We implement OpenMPL in C++ and use Boost [32] as the basic
graphics library. All of the experiments are tested on an Intel Core
2.9 GHz Linux machine. We adapt scaled down and modified ISCAS
benchmarks from [8] to conduct experiments, which are widely used
in previous works. The minimum coloring spacing is set to 120nm for
the first ten cases and as 100nm for the last five cases, as in [8], [13],
[20]. The thread number is 8 and the graph simplification level is 3
(ICC, HIDE_SMALL_DEGREE, BICONNECTED_COMPONENT). Fig.
16 shows the decomposition result for case C432 by dancing links
based algorithm, which can be obtained in 0.008 seconds.

Fig. 3 Case C432 decomposition result.

In this section, we only focus on the results of different decompo-
sition algorithms with stitch insertion on TPLD problem due to page
limit, which is more difficult to obtain optimal results compared with
DPLD and stitch-free problems. More detailed results and discussions
can be found in [1].

Firstly, we discuss the effectiveness of different decomposition al-
gorithms implemented in our framework. Specially, MIS and LP are
not listed since they cannot solve the problem with stitch edges. We
compare the conflict and stitch number in coloring results and compute
the corresponding cost following Equation (1), where parameter α is
set to 0.1, thus the decomposition cost is calculated by cn#+0.1 · st#.

TABLE I compares the performance of implemented algorithms,
where “ILP”, “SDP”, “Dancing links” and “Backtracking” represent
OpenMPL with corresponding algorithms respectively. Columns “st#”
and “cn#” denote the stitch number and the conflict number in the final
coloring result, while the column “cost” is the decomposition cost.

For the cases whose runtime are more than 3600 seconds, we directly
terminate the computations and do not measure the effectiveness.
According to the results shown in the table, ILP-based algorithm
achieves the best results no matter in the conflict number or the
decomposition cost. Also, the backtracking algorithm can achieve same
results with ILP-based algorithm in the cases which can be solved
within 3600 seconds by backtracking algorithm. This is because all of
the algorithms use the same simplification graphs as input and both ILP-
based algorithm and backtracking can search for the optimal solution
of Equation (1) in the search space. The result of SDP-based algorithm
is close to the optimal solution, where the average decomposition cost
is increased by 21.7%. The reason is that some stitches which can be
applied to solve conflicts are ignored by SDP-based algorithm, such
that the average stitch number of SDP-based algorithm is reduced by
8.4%. Another approaching but not optimal algorithm is the dancing
links based algorithm, where the decomposition cost is increased by
5.4%. The reason is that we only insert exactly one stitch candidate in
each polygon feature for speedup while there are some features whose
stitches are more than one, which is ignored by our current dancing
links implementation.

We also measure and compare the runtimes of different decompo-
sition algorithms. The runtime result can be also found in TABLE I,
where the column “time(s)” is the real time of decomposition in seconds
instead of CPU time considering that we use multiple threads in our
experiments. According to the results, backtracking-based algorithm
faces a serious performance bottleneck when the input circuit becomes
larger and even fails to finish the decomposition procedure within 3600
seconds on S35932 and S38584 circuits.

Besides the worst backtracking algorithm, the other three algorithms
also show an obvious differences in runtime, where the dancing links
based algorithm outperforms all of the other algorithms in most cases
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TABLE I Decomposition Cost Comparison
Circuit ILP SDP Dancing links Backtracking

time(s) st# cn# cost time(s) st# cn# cost time(s) st# cn# cost time(s) st# cn# cost
C432 0.045 4 0 0.4 0.021 4 0 0.4 0.008 4 0 0.4 0.023 4 0 0.4
C499 0.047 0 0 0 0.016 0 0 0 0.014 0 0 0 0.012 0 0 0
C880 0.053 7 0 0.7 0.018 7 0 0.7 0.008 7 0 0.7 0.010 7 0 0.7
C1355 0.050 3 0 0.3 0.022 2 1 1.2 0.013 3 0 0.3 0.035 3 0 0.3
C1908 0.039 1 0 0.1 0.010 1 0 0.1 0.008 1 0 0.1 0.018 1 0 0.1
C2670 0.064 6 0 0.6 0.025 6 0 0.6 0.016 6 0 0.6 0.024 6 0 0.6
C3540 0.067 8 1 1.8 0.035 8 1 1.8 0.016 8 1 1.8 1.981 8 1 1.8
C5315 0.074 9 0 0.9 0.029 9 0 0.9 0.012 10 0 1 0.034 9 0 0.9
C6288 0.679 205 1 21.5 0.137 200 6 26 0.082 203 5 25.3 125.562 205 1 21.5
C7552 0.105 21 1 3.1 0.049 20 2 4 0.040 22 1 3.2 0.143 21 1 3.1
S1488 0.184 2 0 0.2 0.020 2 0 0.2 0.005 2 0 0.2 0.013 2 0 0.2
S38417 0.848 55 19 24.5 0.327 50 24 29 0.248 56 20 25.6 2.388 55 19 24.5
S35932 2.756 40 44 48 0.910 24 60 62.4 0.513 45 46 50.5 >3600 NA NA NA
S38584 2.183 111 42 53.1 0.908 99 54 63.9 0.475 110 44 55 >3600 NA NA NA
S15850 2.148 98 34 43.8 0.852 90 42 51 0.470 102 35 45.2 2340.87 98 34 43.8
average 0.623 38.000 9.467 13.267 0.225 34.800 12.667 16.147 0.129 38.600 10.133 13.993 >647.32 NA NA NA

ratio 1.000 1.000 1.000 1.000 0.361 0.916 1.338 1.217 0.206 1.016 1.070 1.054 >1039.04 NA NA NA

and reduces the average runtime to 20.6% compared with the ILP-based
algorithm. SDP-based algorithm is also faster than ILP-based algorithm
where the average runtime is reduced by 63.9% but it is still almost
twice as much as dancing links based algorithm.

IV. CONCLUSION AND FUTURE WORK

OpenMPL is a general framework for multiple patterning layout
decomposition problem and provides unified interfaces for layout de-
composition algorithms and graph simplification speed-up techniques.
Multi-threading, stitch insertion and shape-free feature are also sup-
ported in our framework. All of these features and some variables such
as minimal distances are customizable and users can switch between
these options freely. This version of OpenMPL has implemented most
state-of-the-art algorithms and the results demonstrate the effectiveness
and the efficiency. However, there are still much room for OpenMPL
to improve. In the future we plan to integrate post-refinement, optimize
our stitch insertion phase and develop acceleration techniques for the
dancing links based algorithm.
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