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As silicon complexity scales toward trillion-transistor systems, the demand for specialized Artificial In-
telligence (AI) hardware is outpacing the productivity of traditional Electronic Design Automation (EDA)
methodologies. Designing a flagship chip at advanced nodes now requires massive engineering teams and
months of “human-in-the-loop” iterations (see left of Figure [ll). Exemplified by unprecedented industry
moves such as NVIDIA’s $2 billion investment in Synopsys, the industry is transitioning from human-driven,
tool-assisted flows toward autonomous EDA, where Al moves the human role from active ‘in-the-loop’ inter-
vention to strategic ‘on-the-loop’ supervision.

However, realizing this vision requires overcoming four fundamental challenges: (i) Fragmentation in opti-
mizations, where upstream decisions lack visibility into downstream physical and manufacturing constraints;
(ii) Modality gaps between heterogeneous design representations and current AI architectures, preventing
AT from capturing the full design context; (iii) Scalability limits of existing AI approaches for billion-scale
combinatorial problems; and (iv) Lack of Robustness, where AI designs fail physical verification because
Al-for-design lacks feedback from real-world manufacturing constraints. In light of these challenges, my re-
search aims to enable the transition toward truly end-to-end autonomous EDA, grounded in three pillars:
Perception (understanding multi-modal data), Action (executing scalable optimizations for superior power,
performance and area), and Grounding (anchoring Al in physical reality).

I am well positioned to contribute to this transition because: (i) I have cross-disciplinary expertise that
combines Al, EDA, and hardware testing, evidenced by publications in top venues and three Best Paper
Awards. Specifically, my work fused geometric deep learning @] and Large Language Models (LLMs) [E] with
EDA, fundamentally rethinking how AI perceives chip topology and semantics. My works in robust system
[], [@] and hardware testing [E] bridge the gap between algorithmic design and physical reality, delivering
solutions developed in close collaboration with and actively evaluated by major industry collaborators. (ii)
My work combines mathematical rigor with scalability, replacing heuristics with differentiable and analytical
solvers (e.g., Semidefinite Programming (SDP) [H], differentiable routing [H]) to ensure global optimality;
(iii) Finally, my accomplishments deliver proven industrial value, with algorithms deployed in industrial
production flows, earning recognition through the Qualcomm Innovation Fellowship and two Apple PhD
Fellowships in Integrated Systems.
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Figure 1: Overview of background, current research, and future vision towards End-to-End Autonomous
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1 Current Research: Foundations of Autonomous EDA
Thrust 1: Multi-Modal Perception for EDA (The “Eyes”)

Autonomous EDA begins with perception, the capability for Al to understand the design context. However,
design context presents unique challenges to standard Al models due to its complex, highly structured, and
multi-modal nature. My research asks: How can we enable Al to perceive the complex, multi-modal nature
of integrated circuits?

Multi-Modal Representations in EDA tasks. My research introduced geometric deep learning for EDA
by viewing chips as native multi-modal geometric structures. Our work [g], [9] modeled pins as point clouds
and systematically studied which point-cloud neural architectures best encode pins to guide routing tree
construction. This approach was among the first to demonstrate that geometric learning could outperform
traditional heuristics in routing tasks, and was recognized with the Best Paper Award at ASP-DAC 2021. In
parallel, we developed Graph Neural Network (GNN) architectures tailored to layout decomposition [{], [L0]
and logic locking [11], laying early foundations for multi-modal learning in EDA with 100+ follow-up studies
in just a few years.

Theoretical Limits of Graph Learning. Blind application of GNNs in EDA often fails because graphs
associated with hardware fundamentally differ from graphs in other fields. In [11], we rigorously proved
that message-passing GNNs are upper-bounded by the heterogeneous and directed Weisfeiler-Lehman test
in distinguishing netlist isomorphism. We further identified that heterophily (dissimilar neighbors) is a key
characteristic of layout graphs for the layout decomposition task, leading to new GNN architectures designed
specifically for the graph coloring problem [[12]. This theoretical grounding ensures mathematically sound
models beyond mere empirical tuning, and has inspired 40+ subsequent works by others.

BRIDGES: Unifying Graph Learning and LLMs. Recognizing that chips are described by both seman-
tics (RTL) and topology (netlist), we developed BRIDGES [2], the first framework to effectively fuse LLMs
with GNNs for EDA tasks. BRIDGES enables an LLM to “understand” graph-modality information such
as the netlist structure. By projecting graph embeddings into the LLM’s token space, BRIDGES achieves
2x-10x improvements over text-only baselines across multiple EDA tasks. The framework was open-sourced
and reached 50+ stars and downloads on Github and Hugging Face within months. This work was recognized
as the Best Paper Honorable Mention at ICLAD’25, and has attracted interest from industry, e.g., NVIDIA,
MediaTek, and Apple, motivating follow-up discussions with industry leaders on deploying BRIDGES in
industrial workflows.

Thrust 2: Analytical and Differentiable Optimization (The “Hands”)

Most EDA tasks are combinatorial optimization problems plagued by discrete constraints (e.g., binary digits).
My approach maps discrete problems into continuous landscapes, and the global gradients can guide the
optimization out of local minima.

Analytical Optimizations. I specialize in reformulating discrete, geometric design challenges into globally
solvable analytical models. We developed a global floorplanning framework using SDP [6], providing global
optimality guarantees under specific objective relaxations. This analytical approach was evaluated from
industry for its potential to automate the floorplanning of complex SoCs, a task that currently consumes
days of human effort. Similarly, OpenMPL [13], our open-source analytical solvers for layout decomposition,
became a standard benchmarking suite in the community, accumulating 80+ stars on GitHub.

Differentiable Programming. Differentiable Programming facilitates (1) GPU parallelism and (2) global
gradient-based guidance that escapes the local optima that traps traditional tools. In collaboration with
NVIDIA, we developed DGR [[7], shifting global routing from sequential heuristics to a concurrent, differ-
entiable optimization paradigm. DGR formulates global routing as a candidate path selection problem for
millions of nets simultaneously. By optimizing the entire routing solution concurrently, DGR resolves con-
gestion holistically rather than locally. This work, currently under a joint patent filing with NVIDIA, reduced
congestion overflows by 23.9% on average compared to state-of-the-art academic global routers. Extending
this differentiable paradigm to hardware testing, we introduce DEFT [14], reformulating discrete ATPG as a
continuous optimization task using a novel reparameterization technique. DEFT optimizes a global objective
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to minimize pattern count while maximizing coverage across all hard-to-detect (HTD) faults simultaneously.
On industrial benchmarks, DEFT improved the detection of Hard-to-Detect (HTD) faults by 21.1% to 48.9%
compared to a leading commercial tool, under the same pattern budget and comparable runtime.

Thrust 3: Robustness Under Physical Uncertainty (The “Grounding”)

A design is good only if grounded in reality. My research philosophy is that robustness must be verified not
just in abstract models, but under the stochastic uncertainty of the physical world. My pursuit of robustness
began at the system level, where we pioneered realistic and continuous physical-world tests for autonomous
driving systems [4]. Our work concerning system robustness, including DeepBillboard [4] and DeepFL [3]
(Best Paper Award, ISSTA 2019), has received nearly 600 citations. Bringing this “reality-first” philosophy
to EDA, I recognized that legacy fault models fail to capture the silicon reality. We introduced PEPR
(Pseudo-Exhaustive Physically-aware Region Testing)[5] to bridge the gap between abstract netlists and
physical layout by identifying all “physical regions” susceptible to defects that legacy models miss. Analysis
of 30,000 failing industrial 14nm chips demonstrated that fault behavior characterized by PEPR matched
97.7% defects (vs. 0.6% for stuck-at fault and 5.4% for gate-exhaustive, see Figure m) Building on this
success, we expanded PEPR into a comprehensive suite for reliability, such as intra-cell testing [[15], diagnosis
[16], and faulty function extraction [17]. This body of work discusses the industry pain point of silent data
corruption in data centers, and is conducted in long-term collaboration with Stanford University. It has and
continues to attract funding and active collaboration from Broadcom, Google, Intel, Qualcomm, and other
industry leaders.

Future Research Agenda: The iDAT Lab

My long-term goal is to realize Autonomous EDA as a unified, end-to-end design engine, shifting the human
role from active intervention to strategic supervision. To achieve this, I will establish the intelligent Design
Automation & Testing (iDAT) lab. We envision a future where: (1) heuristic black boxes are replaced by
differentiable solvers or learned proxies; (2) upstream stages receive instant and comprehensive feedback from
downstream constraints; (3) multi-modal agents orchestrate design flows by reasoning over feedback signals
and dynamically invoking tools with optimized arguments; and (4) manufacturing-aware design becomes
self-improving with every tapeout.

Pillar 1: The Physics-Native Design Engine (Near-Term, 1-2 Years)

We will evolve differentiable solvers into real-time physics learning engines via an “ Al-warm-start, differentiable-
fine-tune” paradigm (See Figure m) By training neural proxies through physics-rich gradients from analytical
solvers, we enable single-inference generation of high-quality design candidates. For instance, gradients in
DGR, representing the congestion sensitivity for each grid, can be used to train a customized GNN to predict
a global routing solution directly. These candidates serve as “warm starts” that are subsequently fine-tuned
by the differentiable solver. Together, these techniques enable near-interactive “what-if” analyses (“if I move
this macro, how does it affect congestion?”) where designers receive physical feedback in seconds.

Pillar 2: Multi-Modal EDA Agents (Mid-Term, 1-4 Years)

While Pillar 1 establishes the “differentiable hands”, Pillar 2 constructs the “multi-modal brain” to orchestrate
solvers and tools.

Multi-Modal Reasoning for RTL Generation. We will extend our BRIDGES framework [2] to verify
that design intelligence requires an abstract multi-modal environment, which integrates graph (dataflow), text
(specifications), and waveforms (behavior). My hypothesis is that functional correctness in RTL generation
stems from joint reasoning over these diverse modalities. Preliminary results on NVIDIA’s CVDP benchmark
demonstrate that such multi-modal inputs can elevate functional correctness from 40% to 85% compared to
text-only LLMs.

Bridging Logic and Silicon via Diagnosis. Beyond RTL generation, I will develop agents to navigate
the intricate and non-obvious link between digital logic and physical silicon. By analyzing tester responses
and physical layouts in real-time, these agents will mimic expert reasoning to isolate defects. Success in this
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high-complexity diagnosis domain is a foundational step; it validates the agent’s ability to combine physical
and logical constraints, proving its potential for autonomous end-to-end design.

Pillar 3: Scalable Testing and Intelligent Yield Learning (Mid-Term, 1-4 Years)

My third pillar anchors abstract design models in the physical reality of manufacturing.

To transform PEPR from a post-silicon analysis tool into a ubiquitous sign-off engine, I will pursue
hardware-algorithm co-optimization. First, acknowledging that region analysis is inherently a massive par-
allel geometric problem, we will re-architect PEPR as a GPU-native engine to achieve orders-of-magnitude
speedup, leveraging my experience in CUDA [[7], [14] and AI acceleration [1§]. Second, we will evolve PEPR
from “exhaustive” to “predictive,” and utilize active learning agents to direct computational resources toward
high-risk regions, making physical-aware verification tractable at full-chip scale.

Beyond testing, I aim to answer a foundational question: How can we turn physical failure data into
design wisdom? Current pre-silicon yield models are either hand-crafted rules-of-thumb or proprietary black
boxes. We will propose data-driven yield learning to close the loop. By correlating silicon failure data with
upstream design features [17], we can make agents evolve with every tapeout, allowing designers to visualize
risk regions during the pre-silicon phase.

Closing the Loop: End-to-End Autonomous Engine (Long-Term, 3-5 Years)

My ultimate objective is the full integration of these pillars into a unified design engine.

Cross-Stage Gradient Propagation. Upstream tools currently optimize for abstract objectives without
downstream visibility. They rely on loose proxies, failing to capture the true physical costs of design decisions
and often deviate from actual constraints. I propose to bridge this gap by back-propagating physical gradients
from downstream solvers (e.g., DGR’s congestion or DEFT’s testability) or learned neural proxies to guide
upstream tasks (e.g., congestion- and testability-aware logic synthesis). This mathematically minimizes
physical violations by providing real-time, physics-based feedback during early design stages.

Multi-Modal Agent as Cross-Stage Orchestrator. The multi-modal agent will serve as the Strategic
Orchestrator, managing the end-to-end design closure. Unlike current human-centric flows, these agents
leverage multi-modal perception to perform intelligent planning and decision that shift the design process from
a slow, human-in-the-loop cycle to an autonomous, 24/7 accelerated flow. To realize this vision, my research
includes three phases: First, we will integrate downstream multi-modal feedback (e.g., timing reports) into
the agent’s reasoning loop, enabling it to proactively orchestrate tool chains and optimize hyper-parameters.
Building upon this reasoning core, we will investigate long-horizon memory mechanisms. This is critical to
prevent the agent from “getting lost” in the vast design context and hundreds of EDA command sequences
during multi-day autonomous runs. Finally, these capabilities will be integrated into and evaluated on
OpenROAD, the leading open-source EDA flow, in addition to planned collaborations with commercial EDA
vendors.

Collaboration Plans and Funding opportunities

My research is inherently interdisciplinary, bridging the gap between machine learning, circuit optimization,
and physical manufacturing. To realize the vision of the iDAT Lab and an end-to-end Autonomous EDA
system, I plan to collaborate broadly across the EECS community : (i) partnering with ML researchers to
further scale geometric deep learning and multi-modal LLMs for billion-scale netlist and layout problems; (ii)
collaborating with computer architecture and VLSI design groups to integrate my differentiable solvers (e.g.,
DGR, DEFT) into production flows to evaluate system-level PPA; and (iii) working with manufacturing and
testing experts to evolve the PEPR framework for advanced-node reliability and yield learning.

My funding strategy leverages federal, industrial, and consortium support. I will target NSF (FuSe2,
Future CoRe) for foundational AI-EDA research, DARPA (ERI 2.0) for autonomous EDA and hardware
assurance, and CHIPS Act (NAPMP, NSTC) for manufacturing-aware design. Furthermore, I will pursue
SRC (GRC, JUMP 2.0) and direct research gifts from long-term industry collaborators (e.g., Apple, NVIDIA,
Google, Intel, Broadcom) to address industry pain points.
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